リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope

Kanta Asakawa Dang-il Kim Shotaro Yaguchi Mikito Tsujii Katsumasa Yoshioka Keisuke Kaneshima 30804025 Yusuke Arashida 30715181 Shoji Yoshida 90447227 Hidemi Shigekawa 20134489 Masashi Kuwahara 60356954 Ikufumi Katayama 80432532 Jun Takeda 60202165 横浜国立大学

2020.11.24

概要

A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.

この論文で使われている画像

参考文献

R. Von Gutfeld and P. Chaudhari, J. Appl. Phys. 43, 4688 (1972).

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, J. Appl. Phys. 89, 3168

(2001).

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O.

Jones, N. Yamada, M. Takata, and R. Kojima, Nat. Mater. 10, 129 (2011).

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,

M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung et al., IBM J. Res. Dev. 52, 465

(2008).

F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I.

Ronneberger, R. Mazzarello et al., Science 358, 1423 (2017).

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys.

69, 2849 (1991).

I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, J. Appl.

Phys. 87, 4130 (2000).

Y. Sanari, T. Tachizaki, Y. Saito, K. Makino, P. Fons, A. V. Kolobov, J.

Tominaga, K. Tanaka, Y. Kanemitsu, M. Hase et al., Phys. Rev. Lett. 121,

165702 (2018).

H. Satoh, K. Sugawara, and K. Tanaka, J. Appl. Phys. 99, 024306 (2006).

10

K. Tanaka, T. Gotoh, and K. Sugawara, J. Optoelectron. Adv. Mater. 6, 1133

(2004).

11

M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

12

M. Hada, W. Oba, M. Kuwahara, I. Katayama, T. Saiki, J. Takeda, and K. G.

Nakamura, Sci. Rep. 5, 13530 (2015).

13

M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, Appl. Opt.

49, 3470 (2010).

14

S. H. Møller, E. H. Eriksen, P. L. Tønning, P. B. Jensen, J. Chevallier, and P.

Balling, Appl. Surf. Sci. 476, 221 (2019).

15

X.-B. Li, X. Liu, X. Liu, D. Han, Z. Zhang, X. Han, H.-B. Sun, and S. Zhang,

Phys. Rev. Lett. 107, 015501 (2011).

16

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T.

Uruga, Nat. Mater. 3, 703 (2004).

17

J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, Appl. Phys. Lett. 104,

261903 (2014).

18

P. Klarskov, H. Kim, V. L. Colvin, and D. M. Mittleman, ACS Photonics 4,

2676 (2017).

19

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes,

L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, Nat. Photonics 7,

620 (2013).

20

V. Jelic, K. Iwaszczuk, P. H. Nguyen, C. Rathje, G. J. Hornig, H. M. Sharum, J.

R. Hoffman, M. R. Freeman, and F. A. Hegmann, Nat. Phys. 13, 591 (2017).

21

Y. Terada, S. Yoshida, O. Takeuchi, and H. Shigekawa, Nat. Photonics 4, 869

(2010).

22

T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, Nature 539, 263 (2016).

23

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa,

and J. Takeda, Nat. Photonics 10, 762 (2016).

FIG. 4. (a) Topographic image of Ge2Sb2Te5(100 nm)/HOPG surface with a 100 nm

 100 nm area. (b) IðV ¼ 200 mVÞ=IðV ¼ 600 mVÞ mapping of the same

area as (a) before and (c) after laser irradiation.

localized within a few nanometers from the tip center due to the field

enhancement by the tip-sample gap.29,42 It is well known that the

amorphous-to-crystalline phase change can be introduced by either

weak heating6,7 or irradiating with intense terahertz pulses.8 These will

be conducted in the future to examine the rewritable characteristics of

the nanoscale phase change of GST.

In conclusion, we have demonstrated that STM coupled with

femtosecond laser pulses can be utilized to non-thermally create

nanometer-scale amorphous marks on GST surfaces. The amorphous

region can be detected through either the changes in the topographic

Appl. Phys. Lett. 117, 211102 (2020); doi: 10.1063/5.0032573

Published under license by AIP Publishing

117, 211102-4

Applied Physics Letters

24

K. Yoshioka, I. Katayama, Y. Arashida, A. Ban, Y. Kawada, K. Konishi, H.

Takahashi, and J. Takeda, Nano Lett. 18, 5198 (2018).

25

S. Huang, M. Hong, Y. Lu, B. Lukyanchuk, W. Song, and T. Chong, J. Appl.

Phys. 91, 3268 (2002).

26

A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, Nano Lett. 5, 1924

(2005).

27

A. Chimmalgi, C. Grigoropoulos, and K. Komvopoulos, J. Appl. Phys. 97,

104319 (2005).

28

A. Chimmalgi, T. Choi, C. Grigoropoulos, and K. Komvopoulos, Appl. Phys.

Lett. 82, 1146 (2003).

29

Y. Chen, Y. Xu, D. Xie, J. Jiang, and Y. Yue, Appl. Therm. Eng. 148, 129 (2019).

30

C. Pauly, M. Liebmann, A. Giussani, J. Kellner, S. Just, J. Sanchez-Barriga, E.

Rienks, O. Rader, R. Calarco, G. Bihlmayer et al., Appl. Phys. Lett. 103, 243109

(2013).

31

Z. Zhang, J. Pan, Y. L. Foo, L. W.-W. Fang, Y.-C. Yeo, R. Zhao, L. Shi, and T.C. Chong, Appl. Surf. Sci. 256, 7696 (2010).

32

H. Dieker and M. Wuttig, Thin Solid Films 478, 248 (2005).

33

T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Thin Solid

Films 370, 258 (2000).

Appl. Phys. Lett. 117, 211102 (2020); doi: 10.1063/5.0032573

Published under license by AIP Publishing

ARTICLE

scitation.org/journal/apl

34

Y. Pan, Z. Li, and Z. Guo, Crystals 9, 136 (2019).

J. Kellner, G. Bihlmayer, V. Deringer, M. Liebmann, C. Pauly, A. Giussani, J.

Boschker, R. Calarco, R. Dronskowski, and M. Morgenstern, Phys. Rev. B 96,

245408 (2017).

36

M. Wuttig, D. L€

usebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, and R.

Dronskowski, Nat. Mater. 6, 122 (2007).

37

A. H. Edwards, A. C. Pineda, P. A. Schultz, M. G. Martin, A. P. Thompson, H.

P. Hjalmarson, and C. J. Umrigar, Phys. Rev. B 73, 045210 (2006).

38

T. Schafer, P. M. Konze, J. D. Huyeng, V. L. Deringer, T. Lesieur, P. Muller,

M. Morgenstern, R. Dronskowski, and M. Wuttig, Chem. Mater. 29, 6749

(2017).

39

T. Kato and K. Tanaka, Jpn. J. Appl. Phys., Part 1 44, 7340 (2005).

40

K. Makino, J. Tominaga, and M. Hase, Opt. Express 19, 1260 (2011).

41

A. Ste¸pniak, M. Caminale, A. Leon Vanegas, H. Oka, D. Sander, and J.

Kirschner, AIP Adv. 5, 017125 (2015).

42

X. Shi, N. Coca-L

opez, J. Janik, and A. Hartschuh, Chem. Rev. 117, 4945

(2017).

43

I. Horcas, R. Fernandez, J. Gomez-Rodriguez, J. Colchero, J. G

omez-Herrero,

and A. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

35

117, 211102-5

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る