リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Catalyst-Free Csp−Csp^3 Cross-Coupling of Bromodifluoroacetamides with 1-Iodoalkynes under Visible-Light Irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Catalyst-Free Csp−Csp^3 Cross-Coupling of Bromodifluoroacetamides with 1-Iodoalkynes under Visible-Light Irradiation

Yamamoto, Yoshihiko Kuroyanagi, Eisuke Suzuki, Harufumi Yasui, Takeshi 名古屋大学

2021.11.09

概要

We describe herein that the cross-coupling of bromodifluoroacetamides with (iodoethynyl)arenes proceeds without recourse to any photocatalyst when exposed to visible light at room temperature to afford alkynyldifluoroacetamides in 62–83% yields (27 examples). Several control experiments suggest that the reaction involves the homolysis of bromodifluoroacetamides and the coupling of the resultant difluoromethyl radical species with the 1-iodoalkynes via a radical chain process. Divergent transformations of the coupling products led to various organofluorine compounds, demonstrating the synthetic utility of the developed photo-coupling method.

参考文献

[1] a) I. Kanwal, A. Mujahid, N. Rasool, K. Rizwan, A. Malik, G. Ahmad, S. A. A. Shah, U. Rashid, N. M. Nasir, Catalysts 2020, 10, 443; b) T. A. Schaub, M. Kivala, Cross-Coupling Reactions to sp Carbon Atoms, in Metal-Catalyzed Cross-Coupling Reactions and More (Eds.: A. de Meijere, S. Bräse, M. Oestreich), Wiley-VCH, Weinheim, 2014, Chap. 9, pp 665-762.

[2] F. Le Vaillant, J. Waser, Chem. Sci. 2019, 10, 8909-8923.

[3] a) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stal, ChemBioChem 2004, 5, 637-643; b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330; d) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359.

[4] Selected reviews: a) J.-P. Bégué, D. Bonnet-Delpon, B. Crousse, J. Legros, Chem. Soc. Rev. 2005, 34, 562-572: b) M. Schlosser, Angew. Chem. 2006, 118, 5558-5572; Angew. Chem. Int. Ed. 2006, 45, 5432-5464; c) C. B. Kelly, M. A. Mercadante, N. E. Leadbeater, Chem. Commun. 2013, 49, 11133-11148; d) B. I. Usachev, J. Fluorine Chem. 2015, 175, 36-46; e) J. Doolfen, N. De Kimpe, M. D’hooghe, Synlett 2016, 27, 1486-1510; f) F. Tian, G. Yan, J. Yu, Chem. Commun. 2019, 55, 13486-13505; g) B. Chaudhary, N. Kulkarni, N. Saiyed, M. Chaurasia, S. Desai, S. Potkule, S. Sharma, Adv. Synth. Catal. 2020, 362, 4794-4819.

[5] Selected reviews: a) S. Arimitsu, G. B. Hammond, Chimica Oggi/Chemistry Today 2010, 28, 20-22; b) T. Konno, Synlett 2014, 25, 1350-1370; c) C. Tresse, S. Schweizer, P. Bisseret, J. Lalevée, G. Evano, N. Blanchard, Synthesis 2016, 48, 3317-3330; d) A. Hachem, D. Grée, S. Chandrasekhar, R. Grée, Synthesis 2017, 49, 2101-2116; e) J. Escorihurla, D. M. Sedgwick, A. Liobat, M. Medio-Simón, P. Barrio, S. Fustero, Beilstein J. Org. Chem. 2020, 16, 1662-1682.

[6] Selected reviews: a) P. Gao, X.-R. Song, X.-Y. liu, Y.- M. Liang, Chem. Eur. J. 2015, 21, 7648-7661; b) M.-C. Belhomme, T. Besset, T. Poisson, X. Pannecoucke, Chem. Eur. J. 2015, 21, 12836-12865; c) A. Hassanpour, M. R. P. Heravi, A. Ebadi, A. Hosseinian, E. Vessally, J. Fluorine Chem. 2021, 245, 109762.

[7] Methods using stoichiometric copper reagents: a) O. Kitagawa, T. Taguchi, Y. Kobayashi, Chem. Lett. 1989, 389-392; b) T. Besset, T. Poisson, X. Pannecoucke, Eur. J. Org. Chem. 2014, 7220-7225.

[8] a) X.-J. Wei, W. Boon, V. Hessel, T. Noël, ACS Catal. 2017, 7, 7136-7140; b) N. Iqbal, N. Iqbal, S. S. Han, E. J. Cho, Org. Biomol. Chem. 2019, 17, 1758-1762; c) Y. Xiao, Y.-K. Chun, S.-C. Cheng, R. Liu, M.-K. Tse, C.- C. Ko, Org. Biomol. Chem. 2020, 18, 8686-8693.

[9] Y. Yamamoto, Org. Synth. 2018, 95, 267-275.

[10] a) Y. Yamamoto, E. Ohkubo, M. Shibuya, Green Chem. 2016, 18, 4628-4632; b) Y. Yamamoto, E. Ohkubo, M. Shibuya, Adv. Synth. Catal. 2017, 359, 1747-1751; c) Y. Yamamoto, J. Org. Chem. 2018, 83, 12775-12783.

[11] S. V. Rosokha, Faraday Discuss. 2017, 203, 315-352.

[12] Selected examples: a) F.-L. Zeng, K. Sun, X.-L. Chen, X.-Y. yuan, S.-Q. He, Y. Liu, Y.-Y. Peng, L.-B. Qu, Q.-Y. Lv, B. Yu, Adv. Synth. Catal. 2019, 361, 5176- 5181; b) H. Lu, D. Wang, A. Zhang, J. Org. Chem. 2020, 85, 942-951; c) T. Mao, M.-J. Ma, L. Zhao, D.-P. Xue, Y. Yu, J. Gu, C.-Y. He, Chem. Commun. 2020, 56, 1815-1818; d) L. Helmecke, M. Spittler, B. M. Schmidt, C. Czekelius, Synthesis 2021, 53, 123-134.

[13] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.

[14] D. E. Yerien, S. Barata-Vallejo, B. Camps, A. E. Cristófalo, M. E. Cano, M. L. Uhrig, A. Postigo, Catal. Sci. Technol. 2017, 7, 2274-2282.

[15] J. Jung, E. Kim, Y. You, E. J. Cho, Adv. Synth. Catal. 2014, 356, 2741-2748.

[16] a) S. I. Arlow, J. F. Hartwig, Angew. Chem. 2016, 128, 4643-4648; Angew. Chem. Int. Ed. 2016, 55, 4567-4572; b) A. Honraedt, A. Van Der Lee, J.-M. Campagne, E. Leclerc, Adv. Synth. Catal. 2017, 359, 2815-2823.

[17] a) H. L. Sham, D. A. Betebenner, J. Chem. Soc., Chem. Commun. 1991, 1134-1135; b) P. Li, Z. Chai, G. Zhao, S.-Z. Zhu, Synlett 2008, 2547-2551.

[18] S. Arimitsu, G. B. Hammond, J. Org. Chem. 2007, 72, 8559-8561.

[19] S. Fustero, B. Fernández, P. Bello, C. del Pozo, S. Arimitsu, G. B. Hammond, Org. Lett. 2007, 9, 4251- 4253.

[20] a) Y. Yamamoto, R. Ogawa, K. Itoh, Chem. Comm. 2000, 549-550; b) Y. Yamamoto, T. Arakawa, R. Ogawa, K. Itoh, J. Am. Chem. Soc. 2003, 125, 12143- 12160; c) Y. Yamamoto, S. Okuda, K. Itoh, Chem. Commun. 2001, 1102-1103; d) Y. Yamamoto, K. Kinpara, T. Saigoku, H. Takagishi, S. Okuda, H. Nishiyama, K. Itoh, J. Am. Chem. Soc. 2005, 127, 605- 613.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る