リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of trans-1,2-dimetalloalkenes through reductive anti-dimagnesiation and dialumination of alkynes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of trans-1,2-dimetalloalkenes through reductive anti-dimagnesiation and dialumination of alkynes

Takahashi, Fumiya Kurogi, Takashi Yorimitsu, Hideki 京都大学 DOI:10.1038/s44160-022-00189-z

2023.02

概要

Polar reactive organometallic species have been key reagents in synthesis for more than a century. Stereodefined 1, 2-dimetallated alkenes offer promising synthetic utility; however, few methods are available for their preparation due to their relatively low stability. Here we report the reductive anti-1, 2-dimetallation of alkynes to stereoselectively generate trans-1, 2-dimagnesio- and 1, 2-dialuminoalkenes, which are stable and have been demonstrated in organic synthesis. These stereodefined 1, 2-dimetallated alkenes are prepared through the use of a sodium dispersion as a reducing agent, and organomagnesium and organoaluminium halides as reduction-resistant electrophiles. Highly nucleophilic 1, 2-dimagnesioalkenes serve as dual Grignard reagents and have been demonstrated to react with various electrophiles to afford anti-difunctionalized alkenes. The 1, 2-dialuminoalkenes react with paraformaldehyde with dearomatization of the aryl moieties to form the corresponding dearomatized 1, 4-diols, with the overall reaction being regarded as alkynyl-directed dearomatization of arenes. X-ray crystallographic analysis further supports the formation of trans-1, 2-dimagnesio- and 1, 2-dialuminoalkenes, with computational studies providing insight into the mechanism of dearomative difunctionalization.

この論文で使われている画像

参考文献

1. Schlosser, M. (ed.) Organometallics in Synthesis: A Manual (Wiley, 2002).

2. Harutyunyan, S. R., den Hartog, T., Geurts, K., Minnaard, A. J. & Feringa, B. L. Catalytic asymmetric conjugate addition and allylic alkylation with Grignard reagents. Chem. Rev. 108, 2824–2852 (2008).

3. Knappke, C. E. I. & von Wangelin, A. J. 35 years of palladium- catalyzed cross-coupling with Grignard reagents: how far have we come? Chem. Soc. Rev. 40, 4948–4962 (2011).

4. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen–metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).

5. Boudier, A., Bromm, L. O., Lotz, M. & Knochel, P. New applications of polyfunctional organometallic compounds in organic synthesis. Angew. Chem. Int. Ed. 39, 4414–4435 (2000).

6. Hevia, E. Towards a paradigm shift in polar organometallic chemistry. Chimia 74, 681–688 (2020).

7. Marek, I. Enantioselective carbometallation of unactivated olefins. J. Chem. Soc. Perkin 1 1999, 535–544 (1999).

8. Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

9. Müller, D. S. & Marek, I. Copper mediated carbometalation reactions. Chem. Soc. Rev. 45, 4552–4566 (2016).

10. Murakami, K. & Yorimitsu, H. Recent advances in transition-metal- catalyzed intermolecular carbomagnesiation and carbozincation. Beilstein J. Org. Chem. 9, 278–302 (2013).

11. Wei, D. & Darcel, C. Iron catalysis in reduction and hydrometalation reactions. Chem. Rev. 119, 2550–2610 (2019).

12. Fürstner, A. trans-Hydrogenation, gem-hydrogenation, and trans- hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm. J. Am. Chem. Soc. 141, 11–24 (2019).

13. Levin, G., Jagur-Grodzinski, J. & Szwarc, M. Chemistry of radical anions and dianions of diphenylacetylene. J. Am. Chem. Soc. 92, 2268–2275 (1970).

14. Dange, D. et al. Acyclic 1,2-dimagnesioethanes/-ethene derived from magnesium(I) compounds: multipurpose reagents for organometallic synthesis. Chem. Sci. 10, 3208–3216 (2019).

15. Zhao, Y., Liu, Y., Lei, Y., Wu, B. & Yang, X.-J. Activation of alkynes by an α-diimine-stabilized Al–Al-bonded compound: insertion into the Al–Al bond or cycloaddition to AlN2C2 rings. Chem. Commun. 49, 4546–4548 (2013).

16. Hofmann, A. et al. Dialumination of unsaturated species with a reactive bis(cyclopentadienyl)dialane. Chem. Commun. 54, 1639–1642 (2018).

17. Chlupatý, T., Turek, J., De Proft, F., Růžičková, Z. & Růžička, A. Addition of in situ reduced amidinatomethylaluminium chloride to acetylenes. Dalton Trans. 44, 17462–17466 (2015).

18. Cui, C. et al. Facile synthesis of cyclopropene analogues of aluminum and an aluminum pinacolate, and the reactivity of LAl[η2-C2(SiMe3)2] toward unsaturated molecules (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3. J. Am. Chem. Soc. 123, 9091–9098 (2001).

19. Schlenk, W. & Bergmann, E. Forschungen auf dem gebiete der alkaliorganischen verbindungen. I. Über produkte der addition von alkalimetal an mehrfache kohlenstoff-kohlenstoff-bindungen. Justus Liebigs Ann. Chem 463, 1–97 (1928).

20. Smith, L. I. & Hoehn, H. H. The reaction between lithium and diphenylacetylene. J. Am. Chem. Soc. 63, 1184–1187 (1941).

21. Engler, T. A., Combrink, K. D. & Ray, J. E. An efficient method for the synthesis of 1-arylalkynes. Synth. Commun. 19, 1735–1744 (1989).

22. Spencer, J. T. & Grimes, R. N. Organotransition-metal metallacarboranes. 9. nido-2,3-Dibenzyl-2,3-dicarbahexaborane(8) [(PhCH2)2C2B4H6], a versatile multifunctional nido-carborane: iron–polyarene sandwich compounds and chromium tricarbonyl π-complexes. Organometallics 6, 328–335 (1987).

23. Al-jumaili, M. A. & Woodward, S. Syntheses of 7-substituted anthra[2,3-b]thiophene derivatives and naphtho[2,3-b:6,7-b′] dithiophene. J. Org. Chem. 83, 11437–11445 (2018).

24. De, P. B., Asako, S. & Ilies, L. Recent advances in the use of sodium dispersion for organic synthesis. Synthesis 53, 3180–3192 (2021).

25. An, J., Work, D. N., Kenyon, C. & Procter, D. J. Evaluating a sodium dispersion reagent for the Bouveault–Blanc reduction of esters. J. Org. Chem. 79, 6743–6747 (2014).

26. Asako, S., Nakajima, H. & Takai, K. Organosodium compounds for catalytic cross-coupling. Nat. Catal. 2, 297–303 (2019).

27. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

28. Burrows, J., Kamo, S. & Koide, K. Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science 374, 741–746 (2021).

29. Takahashi, F., Nogi, K., Sasamori, T. & Yorimitsu, H. Diborative reduction of alkynes to 1,2-diboryl-1,2-dimetalloalkanes: its application for the synthesis of diverse 1,2-bis(boronate)s. Org. Lett. 21, 4739–4744 (2019).

30. Ito, S., Fukazawa, M., Takahashi, F., Nogi, K. & Yorimitsu, H. Sodium-metal-promoted reductive 1,2-syn-diboration of alkynes with reduction-resistant trimethoxyborane. Bull. Chem. Soc. Jpn. 93, 1171–1179 (2020).

31. Fukazawa, M., Takahashi, F., Nogi, K., Sasamori, K. & Yorimitsu, H. Reductive difunctionalization of aryl alkenes with sodium metal and reduction-resistant alkoxy-substituted electrophiles. Org. Lett. 22, 2303–2307 (2020).

32. Cheng, Y.-Z., Feng, Z., Zhang, X. & You, S.-L. Visible-light induced dearomatization reactions. Chem. Soc. Rev. 51, 2145–2170 (2022).

33. Sharma, U. K., Ranjan, P., Van der Eyken, E. V. & You, S.-L. Sequential and direct multicomponent reaction (MCR)- based dearomatization strategies. Chem. Soc. Rev. 49, 8721–8748 (2020).

34. Huck, C. J. & Sarlah, D. Shaping molecular landscapes: recent advances, opportunities, and challenges in dearomatization. Chem 6, 1589–1603 (2020).

35. Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

36. Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization by transition-metal catalysis: a method for transformations of aromatic compounds. Chem 1, 830–857 (2016).

37. Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reaction. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

38. Roche, S. P. & Porco, J. A. Jr. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

39. Rieke, R. D. Preparation of highly reactive metal powders and their use in organic and organometallic synthesis. Acc. Chem. Res. 10, 301–306 (1977).

40. Kojima, C., Lee, K.-H., Lin, Z. & Yamashita, M. Direct and base- catalyzed diboration of alkynes using the unsymmetrical diborane(4), pinB-BMes2. J. Am. Chem. Soc. 138, 6662–6669 (2016).

41. Yoshimura, A. et al. Photoinduced metal-free diboration of alkynes in the presence of organophosphine catalysts. Tetrahedron 72, 7832–7838 (2016).

42. Nagashima, Y., Hirano, K., Takita, R. & Uchiyama, M. Trans- diborylation of alkynes: pseudo-intramolecular strategy utilizing a propargylic alcohol unit. J. Am. Chem. Soc. 136, 8532–8535 (2014).

43. Nagao, K., Ohmiya, H. & Sawamura, M. Anti-selective vicinal silaboration and diboration of alkynoates through phosphine organocatalysis. Org. Lett. 17, 1304–1307 (2015).

44. Ohmura, T., Morimasa, Y. & Suginome, M. 4,4′-Bipyridine- catalyzed stereoselective trans-diboration of acetylenedicarboxylates to 2,3-diborylfumarates. Chem. Lett. 46, 1793–1796 (2017).

45. Knochel, P., Yeh, M. C. P., Berk, S. C. & Talbert, J. Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI. J. Org. Chem. 53, 2390–2392 (1988).

46. Minami, Y., Shiraishi, Y., Yamada, K. & Hiyama, T. Palladium- catalyzed cycloaddition of alkynyl aryl ethers with internal alkynes via selective ortho C–H activation. J. Am. Chem. Soc. 134, 6124–6127 (2012).

47. Chernyak, N. & Gevorgyan, V. Exclusive 5-exo-dig hydroarylation of o-alkynyl biaryls proceeding via C–H activation pathway. J. Am. Chem. Soc. 130, 5636–5637 (2008).

48. Alcaide, B., Almendros, P. & Carrascosa, R. Gold-catalyzed direct cycloketalization of acetonide-tethered alkynes in the presence of water. Tetrahedron 68, 9391–9396 (2012).

49. Baran, A. & Balci, M. Stereoselective synthesis of bishomo- inositols as glycosidase inhibitors. J. Org. Chem. 74, 88–95 (2009).

50. Ohno, T., Ozaki, M., Inagaki, A., Hirashima, T. & Nishiguchi, I. Synthesis of 1,2-disubstituted benzenes and biphenyls from phthalic acids through electroreduction followed by electrocyclic reaction with alkynes. Tetrahedron Lett. 34, 2629–2632 (1993).

51. Lehmkuhl, H., Čuljković, J. & Nehl, H. Reaktionen von Trialkylaluminium mit Alkalimetallen oder Magnesium und elektronenaffinen Olefinen. Liebigs Ann. Chem. 1973, 666–691 (1973).

52. Benkeser, R. A. & Snyder, D. C. Mechanism of the reaction between benzylmagnesium chloride and carbonyl compounds. A detailed study with formaldehyde. J. Org. Chem. 47, 1243–1249 (1982).

53. Eisch, J. J. & Fichter, K. C. Kinetic control and locoselectivity in the electrophilic cleavage of allylic aluminum compounds: reactions of acenaphthenylaluminum reagents with carbonyl substrates. J. Org. Chem. 49, 4631–4639 (1984).

54. Fernández, I. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43, 4953–4967 (2014).

55. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る