リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sources of carbon supporting the fast growth of developing immature moso bamboo (Phyllostachys edulis) culms: inference from carbon isotopes and anatomy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sources of carbon supporting the fast growth of developing immature moso bamboo (Phyllostachys edulis) culms: inference from carbon isotopes and anatomy

Wang, Shitephen Epron, Daniel Kobayashi, Keito Takanashi, Satoru Dannoura, Masako 京都大学 DOI:10.1093/aobpla/plad046

2023.07

概要

Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C₄-carbon fixation in developing culms. We tested whether C₄-photosynthesis or dark-CO₂ fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ¹³C in bulk organic matter and organic compounds. Further, pulse-¹³CO₂-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ¹³C of young shoots and developing culms were higher (−26.3 to −26.9 ‰) compared to all organs of mature bamboos (−28.4 to −30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-¹³CO₂-labelling, the polar fraction extracted from the skin tissues was slightly enriched in ¹³C, and only a weak ¹³C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO₂ cannot be excluded and is more likely than C₄-photosynthetic carbon fixation.

この論文で使われている画像

参考文献

Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J. 2005.

Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Communications in Mass Spectrometry 19:1381–1391. doi:10.1002/

rcm.1912.

Bellasio C, Farquhar GD. 2019. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice:

gains, losses and metabolite fluxes. New Phytologist 223:150–166.

doi:10.1111/nph.15787.

Berveiller D, Damesin C. 2008. Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees

22:149–157. doi:10.1007/s00468-007-0193-4.

Berveiller D, Kierzkowski D, Damesin C. 2007. Interspecific variability

of stem photosynthesis among tree species. Tree Physiology 27:53–

61. doi:10.1093/treephys/27.1.53.

Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke

SV, Duvall MR, Kellogg EA, Lavergne S, McKain MR, et al. 2020.

Downloaded from https://academic.oup.com/aobpla/article/15/4/plad046/7218885 by Kyoto-u Kokoro user on 01 November 2023

In spring, the bamboo shoots emerge, and the developing bamboos enter a phase of active and very rapid growth. Because

the leaf of new-born bamboo had not yet developed, the main

sources of carbohydrates during the FGP were supplied by

mature bamboos and delivered through their belowground

system to the developing culms, which is consistent with a

slight 13C enrichment of the bulk organic matter of immature

bamboos. Although previous studies observed key enzymes

related to C4 carbon fixation, the results based on 13C pulse labelling showed limited CO2 uptake from the atmosphere and

hollow during the FGP. Limited anaplerotic dark fixation of

CO2 is more likely to occur than C4 photosynthetic C fixation.

10

Ghashghaie J, Badeck FW, Lanigan G, Nogués S, Tcherkez G, Deleens

E, Cornic G, Griffiths H. 2003. Carbon isotope fractionation

during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews 2:145–161.

Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB. 2012. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3

plant tissues. Proceedings of the National Academy of Sciences

of the United States of America 109:18204–18209. doi:10.1073/

pnas.1211149109.

Hanba YT, Kobayashi T, Enomoto T. 2010. Variations in the foliar δ13C

and C3/C4 species richness in the Japanese flora of Poaceae among

climates and habitat types under human activity. Ecological Research 25:213–224. doi:10.1007/s11284-009-0652-z.

Helle G, Schleser G. 2004. Beyond CO2 fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intraseasonal studies on broad-leaf trees. Plant, Cell & Environment

27:367–380. doi:10.1111/j.0016-8025.2003.01159.x.

Hibberd JM, Quick WP. 2002. Characteristics of C4 photosynthesis in

stems and petioles of C3 flowering plants. Nature 415:451–454.

doi:10.1038/415451a.

Höll W. 1974. Dark CO2 fixation by cell-free preparations of the wood

of Robinia pseudoacacia. Canadian Journal of Botany 52:727–734.

doi:10.1139/b74-094.

Kiyama S. 1905. About the gas inside the bamboo culms. Tokyo

Kagakai Kaishi 26:333–357. doi:10.1246/nikkashi1880.26.333.

Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner

RA, Saurer M, Rennenberg H, Buchmann N, et al. 2008. Temporal

dynamics of the carbon isotope composition in a Pinus sylvestris

stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750. doi:10.1007/s00442-008-1030-1.

Langenfeld-Heyser R. 1989. CO2 fixation in stem slices of Picea

abies (L.) Karst: microautoradiographic studies. Trees 3:24–32.

doi:10.1007/BF00202397.

Li X, Ye C, Fang D, Zeng Q, Cai Y, Du H, Mei T, Zhou G. 2022. Nonstructural carbohydrate and water dynamics of Moso bamboo

during its explosive growth period. Frontiers in Forests and Global

Change 5:938941. doi:10.3389/gc.2022.9389.

Lundgren MR, Christin PA, Escobar EG, Ripley BS, Besnard G, Long

CM, Hattersley PW, Ellis RP, Leegood RC, Osborne CP. 2016.

Evolutionary implications of C3–C4 intermediates in the grass

Alloteropsis semialata. Plant, Cell & Environment 39:1874–1885.

doi:10.1111/pce.12665.

Müller R, Baier M, Kaiser WM. 1991. Differential stimulation of

PEP-carboxylation in guard cells and mesophyll cells by ammonium and fusicoccin. Journal of Experimental Botany 42:215–220.

doi:10.1093/jxb/42.2.215.

Nalborczyk E. 1978. Dark carboxylation and its possible effect on the

values of δ13C in C3 plants. Acta Physiologiae Plantarum 1:53–58.

Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:

verification of the concentration of chlorophyll standards by atomic

absorption spectroscopy. Biochimica et Biophysica Acta - Bioenergetics 975:384–394. doi:10.1016/S0005-2728(89)80347-0.

Qi H, Coplen TB, Geilmann H, Brand WA, Böhlke JK. 2003. Two new

organic reference materials for δ13C and δ15N measurements and a

new value for the δ13C of NBS 22 oil. Rapid Communications in

Mass Spectrometry 17:2483–2487. doi:10.1002/rcm.1219.

Qi H, Coplen TB, Mroczkowski SJ, Brand WA, Brandes L, Geilmann

H, Schimmelmann A. 2016. A new organic reference material,

l-glutamic acid, USGS41a for δ13C and δ15N measurements—a

­replacement for USGS41. Rapid Communications in Mass Spectrometry 30:859–866. doi:10.1002/rcm.7510.

R Core Team. 2023. R: a language and environment for statistical computing, v.4.2.2. Vienna, Austria: R foundation for Statistical Computing. http://www.r-project.org

Reed AH, Henry RJ, Mason WB. 1971. Influence of statistical method

used on the resulting estimate of normal range. Clinical Chemistry

17:275–284. doi:10.1093/clinchem/17.4.275.

Downloaded from https://academic.oup.com/aobpla/article/15/4/plad046/7218885 by Kyoto-u Kokoro user on 01 November 2023

Continued adaptation of C4 photosynthesis after an initial burst of

changes in the Andropogoneae grasses. Systematic Biology 69:445–

461. doi:10.1093/sysbio/syz066.

Bowling DR, Pataki DE, Randerson JT. 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist 178:24–

40. doi:10.1111/j.1469-8137.2007.02342.x.

Cernusak LA, Marshall JD. 2000. Photosynthetic refixation in

branches of Western white pine. Functional Ecology 14:300–311.

doi:10.1046/j.1365-2435.2000.00436.x.

Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl

A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, et al.

2009. Viewpoint: why are non-photosynthetic tissues generally 13C

enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36:199–213.

doi:10.1071/FP08216.

Chang WJ, Chang MJ, Chang ST, Yeh TF. 2013. Chemical composition

and immunohistological variations of a growing bamboo shoot.

Journal of Wood Chemistry and Technology 33:144–155. doi:10.1

080/02773813.2013.769114.

Chen M, Guo L, Ramakrishnan M, Fei Z, Vinod KK, Ding Y, Jiao

C, Gao Z, Zha R, Wang C, et al. 2022. Rapid growth of Moso

bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome

dynamics, and environmental factors. Plant Cell 34:3577–3610.

doi:10.1093/plcell/koac193.

Chen M, Ju Y, Ahmad Z, Yin Z, Ding Y, Que F, Yan J, Chu J, Wei Q.

2021. Multi-analysis of sheath senescence provides new insights

into bamboo shoot development at the fast growth stage. Tree

Physiology 41:491–507. doi:10.1093/treephys/tpaa140.

Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B,

Verkouteren RM. 2006. New guidelines for δ13C measurements.

Analytical Chemistry 78:2439–2441. doi:10.1021/ac052027c.

Damesin C. 2003. Respiration and photosynthesis characteristics of

current-year stems of Fagus sylvatica: from the seasonal pattern to

an annual balance. New Phytologist 158:465–475.

Damesin C, Lelarge C. 2003. Carbon isotope composition of currentyear shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell & Environment 26:207–219.

doi:10.1046/j.1365-3040.2003.00951.x.

Deleens E, Garnier-Dardart J. 1977. Carbon isotope composition

of biochemical fractions isolated from leaves of Bryophyllum

daigremontianum berger, a plant with crassulacean acid metabolism: some physiological aspects related to CO2 dark fixation.

Planta 135:241–248. doi:10.1007/BF00384896.

Desalme D, Priault P, Gérant D, Dannoura M, Maillard P, Plain C, Epron D.

2017. Seasonal variations drive short-term dynamics and partitioning

of recently assimilated carbon in the foliage of adult beech and pine.

New Phytologist 213:140–153. doi:10.1111/nph.14124.

Gessler A, Keitel C, Kodama N, Weston C, Winters AJ, Keith H, Grice K,

Leuning R, Farquhar GD. 2007. δ13C of organic matter transported

from the leaves to the roots in Eucalyptus delegatensis: short-term

variations and relation to respired CO2. Functional Plant Biology

34:692–706. doi:10.1071/FP07064.

Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK.

2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the

leaves to the wood. Tree Physiology 34:796–818. doi:10.1093/

treephys/tpu040.

Gessler A, Tcherkez G, Karyanto O, Keitel C, Ferrio JP, Ghashghaie J,

Kreuzwieser J, Farquhar GD. 2009. On the metabolic origin of the

carbon isotope composition of CO2 evolved from darkened lightacclimated leaves in Ricinus communis. New Phytologist 181:374–

386. doi:10.1111/j.1469-8137.2008.02672.x.

Gessler A, Tcherkez G, Peuke AD, Ghashghaie J, Farquhar GD. 2008.

Experimental evidence for diel variations of the carbon isotope

composition in leaf, stem and phloem sap organic matter in Ricinus

communis. Plant, Cell and Environment 31:941–953.

Ghashghaie J, Badeck FW. 2014. Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New

Phytologist 201:751–769. doi:10.1111/nph.12563.

AoB PLANTS, 2023, Vol. 15, No. 4

Wang et al. ― Carbon supporting the fast growth of immature bamboo culms

analysis. Rapid Communications in Mass Spectrometry 15:1136–

1140. doi:10.1002/rcm.353.

Wang L, Li Q, Gao P, Wei S, Lu J, Gao Y, Zhang R. 2021. Activities of

key enzymes involved in photosynthesis and expression patterns of

corresponding genes during rapid growth of Phyllostachys edulis.

Journal of Zhejiang A&F University 38:84–92. doi:10.11833/j.

issn.2095-0756.20200277.

Wang S, Chen TH, Liu EU, Liu CP. 2020. Accessing the nursing behaviour of Moso bamboo (Phyllostachys edulis) on carbohydrates dynamics and photosystems. Scientific Reports 10:1015. doi:10.1038/

s41598-020-57643-1.

Wang X, Liu L, Zhang J, Wang Y, Wen G, Gao R, Gao Y, Zhang R.

2012. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid

growth stage after shooting. Chinese Journal of Plant Ecology

36:456–462. doi:10.3724/SP.J.1258.2012.00456.

Wittmann C, Hans M, van Winden WA, Ras C, Heijnen JJ. 2005. Dynamics of intracellular metabolites of glycolysis and TCA cycle

during cell-cycle-related oscillation in Saccharomyces cerevisiae.

Biotechnology and Bioengineering 89:839–847. doi:10.1002/

bit.20408.

Yen TM. 2016. Culm height development, biomass accumulation

and carbon storage in an initial growth stage for a fast growing

Moso bamboo (Phyllostachy pubescens). Botanical Studies 57:10.

doi:10.1186/s40529-016-0126-x.

Yen TM, Lee JS. 2011. Comparing aboveground carbon sequestration

between Moso bamboo (Phyllostachys heterocycla) and China fir

(Cunninghamia lanceolata) forests based on the allometric model.

Forest Ecology and Management 261:995–1002. doi:10.1016/j.

foreco.2010.12.015.

Zachariah EJ, Sabulal B, Nair DNK, Johnson AJ, Kumar CSP. 2016.

Carbon dioxide emission from bamboo culms. Plant Biology

18:400–405. doi:10.1111/plb.12435.

Zhai W, Wang Y, Luan J, Liu S. 2022. Effects of nitrogen addition

on clonal integration between mother and daughter ramets of

Moso bamboo: a 13C-CO2 pulse labeling study Zhang W-H

(ed). Journal of Plant Ecology 15:756–770. doi:10.1093/jpe/

rtab115.

Zhang M, Chen S, Jiang H, Cao Q. 2020. The water transport profile

of Phyllostachys edulis during the explosive growth phase of

bamboo shoots. Global Ecology and Conservation 24:e01251.

doi:10.1016/j.gecco.2020.e01251.

Downloaded from https://academic.oup.com/aobpla/article/15/4/plad046/7218885 by Kyoto-u Kokoro user on 01 November 2023

Richter A, Wanek W, Werner RA, Ghashghaie J, Jäggi M, Gessler A,

Brugnoli E, Hettmann E, Göttlicher SG, Salmon Y, et al. 2009.

Preparation of starch and soluble sugars of plant material for the

analysis of carbon isotope composition: a comparison of methods.

Rapid Communications in Mass Spectrometry 23:2476–2488.

doi:10.1002/rcm.4088.

Rossmann A, Butzenlechner M, Schmidt HL. 1991. Evidence for a

nonstatistical carbon isotope distribution in natural glucose. Plant

Physiology 96:609–614. doi:10.1104/pp.96.2.609.

Shi J, Mao S, Wang L, Ye X, Wu J, Wang G, Chen F, Yang Q. 2021.

Clonal integration driven by source-sink relationships is constrained

by rhizome branching architecture in a running bamboo species

(Phyllostachys glauca): a 15N assessment in the field. Forest Ecology

and Management 481:118754. doi:10.1016/j.foreco.2020.118754.

Shi M, Zhang J, Sun J, Li Q, Lin X, Song X. 2022. Unequal nitrogen translocation pattern caused by clonal integration between

connected ramets ensures necessary nitrogen supply for young

Moso bamboo growth. Environmental and Experimental Botany

200:104900. doi:10.1016/j.envexpbot.2022.104900.

Smith RG, Gauthier DA, Dennis DT, Turpin DH. 1992. Malate- and

pyruvate-dependent fatty acid synthesis in leucoplasts from

developing castor endosperm. Plant Physiology 98:1233–1238.

doi:10.1104/pp.98.4.1233.

Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C. 2016. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys

heterocycla). Scientific Reports 6:25908. doi:10.1038/srep25908.

Tcherkez G, Nogués S, Bleton J, Cornic G, Badeck F, Ghashghaie J.

2003. Metabolic origin of carbon isotope composition of leaf

dark-respired CO2 in French Bean. Plant Physiology 131:237–244.

doi:10.1104/pp.013078.

Uchida EM, Katayama A, Yasuda Y, Enoki T, Otsuki K, Koga S, Utsumi

Y. 2022. Age-related changes in culm respiration of Phyllostachys

pubescens culms with their anatomical and morphological traits.

Frontiers in Forests and Global Change 5:868732. doi:10.3389/

ffgc.2022.868732.

Vuorinen AH, Kaiser WM. 1997. Dark CO2 fixation by roots of willow and barley in media with a high level of inorganic carbon.

Journal of Plant Physiology 151:405–408. doi:10.1016/S01761617(97)80004-1.

Wanek W, Heintel S, Richter A. 2001. Preparation of starch and other

carbon fractions from higher plant leaves for stable carbon isotope

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る