リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cold Exposure Increases Circulating miR-122 Levels via UCP1-Dependent Mechanism in Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cold Exposure Increases Circulating miR-122 Levels via UCP1-Dependent Mechanism in Mice

Bariuan, Jussiaea Valente Okamatsu-Ogura, Yuko Tsubota, Ayumi Matsuoka, Shinya Saito, Masayuki Kimura, Kazuhiro 北海道大学

2020.08

概要

MicroRNA(miR)-122 is highly expressed in liver and secreted into blood, which is reported to enter other tissues to modulate lipid metabolism. Brown adipose tissue (BAT) is responsible for nonshivering thermogenesis required for body temperature maintenance in cold environments. Since BAT activity is deeply related to lipid metabolism, there may be metabolic crosstalk between the liver and BAT through miR-122. In this study, we examined the effect of cold exposure on circulating miR-122 (cir-miR-122) levels in mice. Cold exposure significantly increased the expressions of Uncoupling protein 1 (Ucp1), a key molecule for thermogenesis, indicating the activation of BAT. Cold exposure significantly increased cir-miR-122 level but caused no change in miR-122 and its precursor levels in the liver. In contrast, cold exposure significantly decreased miR-122 level in the muscle, but not in BAT, suggesting that increased cir-miR-122 was due to the enhancement of its secretion from the muscle. To examine whether BAT thermogenesis was a prerequisite for increased cir-miR-122 and decreased miR-122 level in the muscle, effect of cold exposure was examined in UCP1-KO mice. While the expressions of thermogenesis-related genes in BAT, except for that of Ucp1, was increased after cold exposure, no significant changes were observed in cir-miR-122 and muscle miR-122 level in UCP1-KO mice. These results suggest that cold- induced activation of BAT thermogenesis increased cir-miR-122 through the secretion from muscle, although further study is required to find the missing link between BAT thermogenesis and miRNA secretion from the muscle.

この論文で使われている画像

参考文献

1) Ameka M, Markan KR, Morgan DA, BonDurant LD, Idiga SO, Naber MC, Zhu Z, Zingman LV, Grobe JL, Rahmouni K, Potthoff MJ. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep 9, 630, 2019.

2) Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, Pant M, Rowland LA, Bombardier E, Goonasekera SA, Tupling AR, Molkentin JD, Periasamy M. Sarcolipin is a newly identified regulator of muscle- based thermogenesis in mammals. Nat Med 18, 1575-1579, 2012.

3) Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA, Periasamy M. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 292, 16616-16625, 2017.

4) Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol 62, 448-457, 2015.

5) Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17, 200-205, 2011.

6) Bartelt A, John L, Schaltenberg N, Berbée JFP, Worthmann A, Cherradi ML, Schlein C, Piepenburg J, Boon MR, Rinninger F, Heine M, Toedter K, Andreas N, Stefan KN, Markus F, Wijers SL, Lichtenbelt WM, Scheja L, Rensen PCN, Heeren J. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat Commun 8, 15010, 2017.

7) Berbée JFP, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LP, Gordts PL, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PC. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6, 6356, 2015.

8) Cannon B and Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277-359, 2004.

9) Chai C, Rivkin M, Berkovits L, Simerzin A, Zorde-Khvalevsky E, Rosenberg N, Klein S, Yaish D, Durst R, Shpitzen S, Udi S, Tam J, Heeren J, Worthma A, Galun E. Metabolic circuit involving free fatty acids, microRNA 122, and triglyceride synthesis in Liver and muscle tissues. Gastroenterology 153, 1404-1415, 2017.

10) Chen Y, Buyel JJ, Hanssen MJW, Siegel F, Pan R, Naumann J, Schell M, van derLans A, Schlein C, Froehlich H, Heeren J, Virtanen KA, Lichtenbelt WM, Pfeifer A. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Comm 7, 11420, 2016.

11) Chen Z, Wang GX, Ma SL, Jung DY, Ha H, Altamimi T, Zhao XY, Guo L, Zhang P, Hu CR, Cheng JX, Lopaschuk GD, Kim JK, Lin JD. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet- induced metabolic disorders. Mol Metab 6, 863-872, 2017.

12) Cinti S. The adipose organ at a glance. Dis Model Mech 5, 588-594, 2012.

13) Cortez MA, Bueso-Ramos C, Ferdin J, Lopez- Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8, 467-477, 2011.

14) DeJon g JM, Lar s son O , Can n on B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol. Endocrinol Metab 308, E1085-E105, 2015.

15) Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90-94, 1997.

16) Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3, 87-98, 2006.

17) Fedorenko A, Lishko PV, Kiszrichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400-413, 2012.

18) Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H, Rome S. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 13, 78-89, 2014.

19) Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S, Stocchi V. Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PloS One 10, e0125094-e0125094, 2015.

20) Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410, 1-13, 2016.

21) Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, Mao H, Wei M, Clark KR, Mendell JR, Caligiuri MA, Jacob ST, Mendell JT, Ghoshal K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122(8), 2871-83, 2012.

22) Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 28, 3-18, 2017.

23) Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610, 2010.

24) Liu W, Bi P, Shan T, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang S. miR-133a regulates adipocyte browning in vivo. PLoS Genet 9, e1003626, 2013.

25) Long JK, Dai W, Zheng YW, Zhao SP. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med 25(1), 2, 2019.

26) Lorente-Cebrián S, González-Muniesa P, Milagro FI, Martínez JA. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci 133, 23-40, 2019.

27) Mills EL, Pierce KA, Jedrychowski MP, Garrity R, Winther S, Vidoni S, Yoneshiro T, Spinelli JB, Lu GZ, Kazak L, Banks AS, Haigis MC, Kajimura S, Murphy MP, Gygi SP, Clish CB, Chouchani ET. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102-106, 2018.

28) Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 10, e1001314, 2012.

29) Nowack J, Giroud S, Arnold W, Ruf T. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front Physiol 8, 889, 2017.

30) Shabalina IG, Hoeks J, Kramarova TV, Schrauwen P, Cannon B, Nedergaard J. Cold tolerance of UCP1-ablated mice: A skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Biochim Biophys, Acta, Bioenerg 1797, 968–980, 2010.

31) Shamsi F, Zhang H, Tseng YH. MicroRNA regulation of brown adipogenesis and thermogenic energy expenditure. Front Endocrinol 8, 205, 2017.

32) Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450-455, 2017.

33) Villarroya F, Gavaldà-Navarro A, Peyrou M, Villarroya J, Giralt M. The lives and times of brown adipokines. Trends in Endocrin Met 28, 855–867, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る