リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A highly efficient murine model of experimental myopia (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A highly efficient murine model of experimental myopia (本文)

姜, 效炎 慶應義塾大学

2020.03.23

概要

Despite the global pandemic of myopia, the precise molecular mechanism of the onset of myopia remains largely unknown. This is partially because of the lack of efficient murine myopic models that allow genetic manipulation at low cost. Here we report a highly practical and reproducible lens-induced myopia model by specially designed frames and lenses for mice. A lens power dependent myopic induction in mice was shown until minus 30 diopter lenses. The phenotype was significantly stronger than form-deprivation myopia. We presented the protocol for precise evaluations of the state of myopia, including refraction, corneal curvature and axial length using up-to-date devices. We also found that myopic mouse eyes showed decreased visual acuity on optokinetic response examination. Finally, we confirmed the anti-myopic effect of 1% atropine using this model, which showed its potential in drug screening. The strong phenotype, stable evaluation and the potential for gene manipulation utilizing the presented method in mice will accelerate the translational research of myopia.

この論文で使われている画像

参考文献

1. Dolgin, E. The myopia boom. Nature 519, 276–278, https://doi.org/10.1038/519276a (2015).

2. Holden, B. A. et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 123, 1036–1042, https://doi.org/10.1016/j.ophtha.2016.01.006 (2016).

3. Wiesel, T. N. & Raviola, E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 266, 66–68 (1977).

4. Sherman, S. M., Norton, T. T. & Casagrande, V. A. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res 124, 154–157 (1977).

5. Troilo, D. & Judge, S. J. Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus). Vision Res 33, 1311–1324 (1993).

6. Schaeffel, F., Burkhardt, E., Howland, H. C. & Williams, R. W. Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci 81, 99–110 (2004).

7. Wallman, J., Turkel, J. & Trachtman, J. Extreme myopia produced by modest change in early visual experience. Science 201, 1249–1251 (1978).

8. Schaeffel, F., Glasser, A. & Howland, H. C. Accommodation, refractive error and eye growth in chickens. Vision Res 28, 639–657 (1988).

9. Barathi, V. A., Boopathi, V. G., Yap, E. P. & Beuerman, R. W. Two models of experimental myopia in the mouse. Vision Res 48, 904–916, https://doi.org/10.1016/j.visres.2008.01.004 (2008).

10. Shaikh, A. W., Siegwart, J. T. Jr. & Norton, T. T. Effect of interrupted lens wear on compensation for a minus lens in tree shrews. Optom Vis Sci 76, 308–315 (1999).

11. Graham, B. & Judge, S. J. The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Res 39, 189–206 (1999).

12. Hung, L. F., Crawford, M. L. & Smith, E. L. Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med 1, 761–765 (1995).

13. Torii, H. et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine 15, 210–219, https:// doi.org/10.1016/j.ebiom.2016.12.007 (2017).

14. Tkatchenko, T. V., Shen, Y. & Tkatchenko, A. V. Mouse experimental myopia has features of primate myopia. Invest Ophthalmol Vis Sci 51, 1297–1303, https://doi.org/10.1167/iovs.09-4153 (2010).

15. Gu, Y. et al. A Head-Mounted Spectacle Frame for the Study of Mouse Lens-Induced Myopia. J Ophthalmol 2016, 8497278, https:// doi.org/10.1155/2016/8497278 (2016).

16. Wu, X. H. et al. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia. Invest Ophthalmol Vis Sci 56, 967–977, https://doi.org/10.1167/iovs.13-13362 (2015).

17. Huang, F. et al. Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. Invest Ophthalmol Vis Sci 55, 5537–5544, https://doi.org/10.1167/iovs.13-13211 (2014).

18. Faulkner, A. E., Kim, M. K., Iuvone, P. M. & Pardue, M. T. Head-mounted goggles for murine form deprivation myopia. J Neurosci Methods 161, 96–100, https://doi.org/10.1016/j.jneumeth.2006.10.011 (2007).

19. Metlapally, R. et al. Genome-Wide Scleral Micro- and Messenger-RNA Regulation During Myopia Development in the Mouse. Invest Ophthalmol Vis Sci 57, 6089–6097, https://doi.org/10.1167/iovs.16-19563 (2016).

20. Morgan, I. G. & Ashby, R. S. Bright Light Blocks the Development of Form Deprivation Myopia in Mice, Acting on D1 Dopamine Receptors. Invest Ophthalmol Vis Sci 58, 2317, https://doi.org/10.1167/iovs.17-21871 (2017).

21. Chen, S. et al. Bright Light Suppresses Form-Deprivation Myopia Development With Activation of Dopamine D1 Receptor Signaling in the ON Pathway in Retina. Invest Ophthalmol Vis Sci 58, 2306–2316, https://doi.org/10.1167/iovs.16-20402 (2017).

22. Feldkaemper, M. & Schaeffel, F. An updated view on the role of dopamine in myopia. Exp Eye Res 114, 106–119, https://doi. org/10.1016/j.exer.2013.02.007 (2013).

23. Norton, T. T. & Siegwart, J. T. Jr. Light levels, refractive development, and myopia–a speculative review. Exp Eye Res 114, 48–57, https://doi.org/10.1016/j.exer.2013.05.004 (2013).

24. Ashby, R. Animal Studies and the Mechanism of Myopia-Protection by Light? Optom Vis Sci 93, 1052–1054, https://doi.org/10.1097/ OPX.0000000000000978 (2016).

25. Norton, T. T. What Do Animal Studies Tell Us about the Mechanism of Myopia-Protection by Light? Optom Vis Sci 93, 1049–1051, https://doi.org/10.1097/OPX.0000000000000917 (2016).

26. Morgan, I. G., He, M. & Rose, K. A. EPIDEMIC OF PATHOLOGIC MYOPIA: What Can Laboratory Studies and Epidemiology Tell Us? Retina 37, 989–997, https://doi.org/10.1097/IAE.0000000000001272 (2017).

27. Tejedor, J. & de la Villa, P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci 44, 32–36 (2003).

28. Yu, Y., Chen, H., Tuo, J. & Zhu, Y. Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice. Ophthalmic Res 46, 80–87, https://doi.org/10.1159/000323179 (2011).

29. Tkatchenko, T. V., Shen, Y. & Tkatchenko, A. V. Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Invest Ophthalmol Vis Sci 51, 21–27, https://doi.org/10.1167/iovs.08-2767 (2010).

30. Schmucker, C. & Schaeffel, F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44, 1857–1867, https:// doi.org/10.1016/j.visres.2004.03.011 (2004).

31. Pardue, M. T., Stone, R. A. & Iuvone, P. M. Investigating mechanisms of myopia in mice. Exp Eye Res 114, 96–105, https://doi. org/10.1016/j.exer.2012.12.014 (2013).

32. Siegwart, J. T. Jr. & Norton, T. T. Goggles for controlling the visual environment of small animals. Lab Anim Sci 44, 292–294 (1994).

33. Tabata, H., Shimizu, N., Wada, Y., Miura, K. & Kawano, K. Initiation of the optokinetic response (OKR) in mice. J Vis 10(13), 11–17, https://doi.org/10.1167/10.1.13 (2010).

34. Chua, W. H. et al. Atropine for the treatment of childhood myopia. Ophthalmology 113, 2285–2291, https://doi.org/10.1016/j. ophtha.2006.05.062 (2006).

35. Gong, Q. et al. Efficacy and Adverse Effects of Atropine in Childhood Myopia: A Meta-analysis. JAMA Ophthalmol 135, 624–630, https://doi.org/10.1001/jamaophthalmol.2017.1091 (2017).

36. Tkatchenko, A. V. et al. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice. PLoS One 11, e0162541, https://doi.org/10.1371/journal.pone.0162541 (2016).

37. Ma, M. et al. Wnt signaling in form deprivation myopia of the mice retina. PLoS One 9, e91086, https://doi.org/10.1371/journal. pone.0091086 (2014).

38. Chakraborty, R. et al. ON pathway mutations increase susceptibility to form-deprivation myopia. Exp Eye Res 137, 79–83, https:// doi.org/10.1016/j.exer.2015.06.009 (2015).

39. Morgan, I. G. & He, M. An Important Step Forward in Myopia Prevention: Low-Dose Atropine. Ophthalmology 123, 232–233, https://doi.org/10.1016/j.ophtha.2015.10.012 (2016).

40. Chia, A., Lu, Q. S. & Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 123, 391–399, https://doi.org/10.1016/j.ophtha.2015.07.004 (2016).

41. Carr, B. J. & Stell, W. K. Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Sci Rep 6, 9, https://doi.org/10.1038/s41598-016-0002-7 (2016).

42. Gallego, P. et al. Scleral changes induced by atropine in chicks as an experimental model of myopia. Ophthalmic Physiol Opt 32, 478–484, https://doi.org/10.1111/j.1475-1313.2012.00940.x (2012).

43. Lin, H. J. et al. Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine 10, 269–281, https://doi.org/10.1016/j.ebiom.2016.07.021 (2016).

44. Barathi, V. A. et al. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res 13, 4647–4658, https://doi.org/10.1021/pr500558y (2014).

45. Irving, E. L., Sivak, J. G. & Callender, M. G. Refractive plasticity of the developing chick eye: a summary and update. Ophthalmic Physiol Opt 35, 600–606, https://doi.org/10.1111/opo.12253 (2015).

46. Backhouse, S., Collins, A. V. & Phillips, J. R. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol Opt 33, 563–572, https://doi.org/10.1111/opo.12069 (2013).

47. McCarthy, C. S., Megaw, P., Devadas, M. & Morgan, I. G. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res 84, 100–107, https://doi.org/10.1016/j.exer.2006.09.018 (2007).

48. Schwahn, H. N., Kaymak, H. & Schaeffel, F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick. Vis Neurosci 17, 165–176 (2000).

49. Nickla, D. L. & Totonelly, K. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks. Exp Eye Res 146, 189–195, https://doi.org/10.1016/j.exer.2016.03.003 (2016).

50. Siegwart, J. T. Jr. & Norton, T. T. The susceptible period for deprivation-induced myopia in tree shrew. Vision Res 38, 3505–3515 (1998).

51. Ward, A. H., Siegwart, J. T., Frost, M. R. & Norton, T. T. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Vis Neurosci 34, E003, https://doi.org/10.1017/S0952523816000195 (2017).

52. Guo, L., Frost, M. R., Siegwart, J. T. Jr. & Norton, T. T. Scleral gene expression during recovery from myopia compared with expression during myopia development in tree shrew. Mol Vis 20, 1643–1659 (2014).

53. Troilo, D., Nickla, D. L. & Wildsoet, C. F. Form deprivation myopia in mature common marmosets (Callithrix jacchus). Invest Ophthalmol Vis Sci 41, 2043–2049 (2000).

54. Troilo, D. & Nickla, D. L. The response to visual form deprivation differs with age in marmosets. Invest Ophthalmol Vis Sci 46, 1873–1881, https://doi.org/10.1167/iovs.04-1422 (2005).

55. Smith, E. L. 3rd et al. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51, 3864–3873, https://doi.org/10.1167/iovs.09-4969 (2010).

56. Stone, R. A., Laties, A. M., Raviola, E. & Wiesel, T. N. Increase in retinal vasoactive intestinal polypeptide after eyelid fusion in primates. Proc Natl Acad Sci USA 85, 257–260 (1988).

57. Mei, F., Wang, J., Chen, Z. & Yuan, Z. Potentially Important MicroRNAs in Form-Deprivation Myopia Revealed by Bioinformatics Analysis of MicroRNA Profiling. Ophthalmic Res 57, 186–193, https://doi.org/10.1159/000452421 (2017).

58. Qian, Y. S., Chu, R. Y., Hu, M. & Hoffman, M. R. Sonic hedgehog expression and its role in form-deprivation myopia in mice. Curr Eye Res 34, 623–635, https://doi.org/10.1080/02713680903003492 (2009).

59. Stone, R. A. et al. Development of Experimental Myopia in Chicks in a Natural Environment. Invest Ophthalmol Vis Sci 57, 4779–4789, https://doi.org/10.1167/iovs.16-19310 (2016).

60. Cronin, M. et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One 7, e30940, https://doi.org/10.1371/journal.pone.0030940 (2012).

61. Marks, P. C. et al. Interactive 3D Analysis of Blood Vessel Trees and Collateral Vessel Volumes in Magnetic Resonance Angiograms in the Mouse Ischemic Hindlimb Model. Open Med Imaging J 7, 19–27, https://doi.org/10.2174/1874347101307010019 (2013).

62. Johnson, L. C. et al. Longitudinal live animal micro-CT allows for quantitative analysis of tumor-induced bone destruction. Bone 48, 141–151, https://doi.org/10.1016/j.bone.2010.05.033 (2011).

63. Schaeffel, F. Test systems for measuring ocular parameters and visual function in mice. Front Biosci 13, 4904–4911, doi:3049 (2008).

64. Sugita, Y., Miura, K. & Kawano, K. Principal Fourier component of motion stimulus dominates the initial optokinetic response in mice. Neurosci Res 73, 133–141, https://doi.org/10.1016/j.neures.2012.03.007 (2012).

参考文献をもっと見る