リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration

Lin, Shuhao 京都大学 DOI:10.14989/doctor.k23761

2022.03.23

概要

Collective cell migration in mammalian tissuesis a well-orchestrated cell movement underlying fundamental biological process. Madin-Darby Canine Kidney (MDCK) cells, which hold clear apical-basolateral polarity and clear cell junctions, are frequently used as a model of collective cell migration. The EGFR (epidermal growth factor receptor)-ERK (extracellularsignal regulated kinase) signaling cascade plays a pivotal role in the collective cell migration of various cell types including MDCK cells. During collective cell migration of MDCK cells, ERK activation propagates as multiple waves from the leader cells to the follower cells in an EGFR-dependent manner.

EGFRis bound to and activated by a family of ligands that include epidermal growth factor (EGF), transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor (HBEGF), amphiregulin, betacellulin, epiregulin (EREG), and epigen. Extensive research has clarified the difference among the EGFR ligands with respect to binding affinity to four ErbB-family receptors including EGFR/ErbB1, sensitivity to proteases, subcellular localization, bioactivity to promote cell growth, and migration. However, there are still many questions to be answered about the roles played by the endogenous EGFR ligands, because much of the current knowledge is based on exogenous bolus application of EGFR ligands to tissue culture cells. Meanwhile, knockout mice deficient in each of the seven EGFR ligand genes are viable and fertile, suggesting functional redundancy among the EGFR ligands. Therefore, abrogation of multiple EGFR ligands is essential to clearly demonstrate the activity of the endogenous EGFR ligands.

In this research, to determine which EGFR ligand mediates the propagation of the ERK activation waves during collective cell migration of MDCK cells, by utilizing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas9) method, the four EGFR ligands expressed in MDCK cells, EGF, TGFα, HBEGF and EREG, were knocked out one by one or in combination with others.The propagation of ERK activation waves was markedly suppressed only when allfour EGFR ligands were knocked out. Re-expression of each EGFR ligand showed that EGF, TGFα and EREG, but not HBEGF, can restore the ERK activation waves. Nevertheless, bath application of EGFR ligands failed to induce ERK activation waves in cell lines deficient in all four EGFR ligand genes. Additionally, aiming at complete elimination of the ERK activation waves, neuregulin-1 (NRG-1), a ligand for ErbB3 and ErbB4, was the next growth factor to be knocked out. However, NRG-1 deficiency caused growth arrest in the four EGFR ligand-deficient cells. Interestingly, bolus addition of EGF into the medium was not able to cancel the growth arrest. In conclusion, these results demonstrate that there is functional redundancy of EGFR ligands in the propagation of ERK activation waves during collective cell migration of MDCK cells. MDCK cells deficient in all EGFR ligands will provide a platform to examine the physiological function of each EGFR ligand.

この論文で使われている画像

参考文献

Aikin TJ, Peterson AF, Pokrass MJ, Clark HR, Regot S (2020) MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. Elife 9: e60541. doi:10.7554/eLife.60541

Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M (2017) Propagating wave of ERK activation orients collective cell migration. Dev Cell 43: 305–317.e5. doi:10.1016/j.devcel.2017.10.016

Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol Cell 52: 529–540. doi:10.1016/j.molcel.2013.09.015

Aoki K, Matsuda M (2009) Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat Protoc 4: 1623–1631. doi:10.1038/nprot.2009.175

Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci U S A 108: 12675–12680. doi:10.1073/pnas.1104030108

Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E (2021) Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat Phys 17: 267–274. doi:10.1038/s41567-020-01037-7

Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17: 276–287. doi:10.1038/ncb3115

Draper BK, Komurasaki T, Davidson MK, Nanney LB (2003) Epiregulin is more potent than EGF or TGFalpha in promoting in vitro wound closure due to enhanced ERK/MAPK activation. J Cell Biochem 89: 1126–1137. doi:10.1002/jcb.10584

Dukes JD, Whitley P, Chalmers AD (2011) The MDCK variety pack: Choosing the right strain. BMC Cell Biol 12: 43. doi:10.1186/1471-2121-12-43

Fan H, Derynck R (1999) Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J 18: 6962–6972. doi:10.1093/emboj/18.24.6962

Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, et al (2017) EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell 171: 683–695.e18. doi:10.1016/j.cell.2017.09.017

Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10: 445–457. doi:10.1038/nrm2720

Harris RC, Chung E, Coffey RJ (2003) EGF receptor ligands. Exp Cell Res 284: 2–13. doi:10.1016/s0014-4827(02)00105-2

Hino N, Rossetti L, Mar´ın-Llauradó A, Aoki K, Trepat X, Matsuda M, Hirashima T (2020) ERK-mediated mechanochemical waves direct collective cell polarization. Dev Cell 53: 646–660.e8. doi:10.1016/j.devcel.2020.05.011

Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M (2015) Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. Elife 4: e05178. doi:10.7554/eLife.05178

Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA (2007) EGFreceptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J Cell Sci 120: 3688–3699. doi:10.1242/jcs.010488

Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7: 133–144. doi:10.1016/j.devcel.2004.06.005

Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104: 1027–1032. doi:10.1073/pnas.0610155104

Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17: 97–109. doi:10.1038/nrm.2015.14

Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120–1123. doi:10.1093/bioinformatics/btu743

Nanba D, Toki F, Barrandon Y, Higashiyama S (2013) Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J Dermatol Sci 72: 81–86. doi:10.1016/j.jdermsci.2013.05.009

Ponsioen B, Post JB, Buissant des Amorie JR, Laskaris D, van Ineveld RL, Kersten S, Bertotti A, Sassi F, Sipieter F, Cappe B, et al (2021)

Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nat Cell Biol 23: 377–390. doi:10.1038/s41556-021-00654-5

Prince RN, Schreiter ER, Zou P, Wiley HS, Ting AY, Lee RT, Lauffenburger DA (2010) The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. J Cell Sci 123: 2308–2318. doi:10.1242/jcs.058321

Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J, Silberzan P (2014) Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol 16: 217–223. doi:10.1038/ncb2917

Riese DJ 2nd, Cullum RL (2014) Epiregulin: Roles in normal physiology and cancer. Semin Cell Dev Biol 28: 49–56. doi:10.1016/j.semcdb.2014.03.005

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al (2012) Fiji: An opensource platform for biological-image analysis. Nat Methods 9: 676–682. doi:10.1038/nmeth.2019

Schneider MR, Werner S, Paus R, Wolf E (2008) Beyond wavy hairs: The epidermal growth factor receptor and its ligands in skin biology and pathology. Am J Pathol 173: 14–24. doi:10.2353/ajpath.2008.070942

Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S (2015) Highthroughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC genomics 16: 944. doi:10.1186/s12864- 015-2036-9

Singh B, Carpenter G, Coffey RJ (2016) EGF receptor ligands: Recent advances. F1000Res 5: F1000. doi:10.12688/f1000research.9025.1

Singh B, Coffey RJ (2014) From wavy hair to naked proteins: The role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 28: 12–21. doi:10.1016/j.semcdb.2014.03.003

Sumiyama K, Kawakami K, Yagita K (2010) A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics 95: 306–311. doi:10.1016/ j.ygeno.2010.02.006

Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, Castner BJ, Gerhart MJ, Paxton RJ, Black RA, et al (2002) Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem 277: 12838–12845. doi:10.1074/jbc.M112050200

Sveen K (2004) An introduction to MatPIV 1.6.1. Mechanics and Applied Mathematics http://urn.nb.no/URN:NBN:no-23418

Takazaki R, Shishido Y, Iwamoto R, Mekada E (2004) Suppression of the biological activities of the epidermal growth factor (EGF)-like domain by the heparin-binding domain of heparin-binding EGF-like growth factor. J Biol Chem 279: 47335–47343. doi:10.1074/jbc.M408556200

Taylor SR, Markesbery MG, Harding PA (2014) Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 28: 22–30. doi:10.1016/ j.semcdb.2014.03.004

Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: An open and extensible platform for single-particle tracking. Methods 115: 80–90. doi:10.1016/j.ymeth.2016.09.016

Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ 2nd (2009) Functional selectivity of EGF family peptide growth factors: Implications for cancer. Pharmacol Ther 122: 1–8. doi:10.1016/j.pharmthera.2008.11.008

Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137. doi:10.1038/35052073

Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6: 363–369. doi:10.1038/nmeth.1323

Zeng F, Harris RC (2014) Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol 28: 2–11. doi:10.1016/j.semcdb.2014.01.011

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る