リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Paradoxical activation of c-Src as a drug-resistant mechanism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Paradoxical activation of c-Src as a drug-resistant mechanism

Higuchi, Makio 京都大学 DOI:10.14989/doctor.k23425

2021.07.26

概要

がん化学療法では、がん関連キナーゼに対する ATP 競合阻害薬が多くの例で用いられる。しかし、キナーゼ阻害薬の有効性は必ずしも高くなく、薬剤抵抗性変異の発生や、阻害薬が効かない副シグナル伝達経路の活性化が、その原因と考えられてきた。最初に同定された癌原遺伝子産物として名高いチロシンキナーゼ c-Src は、種々の増殖因子受容体や接着分子と協働し、細胞の増殖や浸潤を促進する。そのため、c-Src にも効果をもつ多目標キナーゼ阻害薬が複数開発されてきた。しかしながら、c-Src への阻害作用が治療に役立つかについては明確になっていない。本研究では、キナーゼ阻害薬がc-Srcにアロステリックな効果をもたらし、逆説的にSrc の下流の細胞増殖性シグナルを活性化することを見出した。c-Src は自身のSH3・SH2 ドメインの分子内相互作用により不活性型構造となる。この自己抑制機能が解除された活性型 c-Src は SH3・SH2 ドメインを介してパートナー分子と結合する。細胞内において、不活性型 c-Src は細胞膜に局在し、活性型変異体 c-Src は接着斑に局在する。c-Src-EGFP を細胞に発現させ、Src阻害薬が及ぼす影響をライブセルイメージングで観察した。細胞膜に局在していたc-Src-EGFP が阻害薬により接着斑への局在変化を誘導した。また、受容体チロシンキナーゼを標的としながら、c-Src にも親和性を示す阻害薬も c-Src の局在変化を誘導した。阻害薬による機能欠失点変異体c-Src-EGFP の局在変化解析により、阻害薬による局在変化には阻害薬が c-Src の ATP 結合部位に結合することが必要であること、SH2ドメイン・SH3 ドメインのどちらかが必要であることを明らかにした。以上の結果は、阻害薬が c-Src を活性型構造に変化させ、阻害薬/c-Src 複合体が c-Src の結合パートナー分子と結合し接着斑へ局在することを示唆している。さらに、c-Src の局在変化に必要なパートナー分子はc-Src の基質であるFAK であること、阻害薬がc-Src とFAK の結合を増強させることを明らかにした。

まず、細胞イメージングを用い、キナーゼ阻害薬投与後 c-Src が接着斑に顕著にトランスロケーションすることを見出した。このとき阻害薬に結合した c-Src は自己抑制的構造がほどけ、接着斑キナーゼ(FAK)と複合体を形成することが判明した。低親和性のSrc 阻害薬を用いた場合では、薬剤を投与後に洗い流すことによって、細胞内およびインビトロにおいて c-Src/FAK 複合体から阻害薬が乖離し、c-Src が FAK をリン酸化することが明らかとなった。このリン酸化部位にはGrb2 が結合することが知られており、実際に阻害薬の洗い流しによって FAK-Grb2-Erk シグナルが活性化することを確認した。

阻害薬の c-Src に対する親和性は、薬剤抵抗性変異により低下する。そこで、薬剤抵抗性変異をもつ c-Src が存在する場合、高親和性の阻害薬を用いても逆説的にシグナルを活性化させるのではないかと仮説を立てた。内在性 SRC 遺伝子に薬剤抵抗性変異を導入したヒトがん細胞株を樹立し検証したところ、ダサチニブ、ボスチニブを含む高親和性のSrc 阻害薬の投与によって、FAK やErk が活性化され、細胞増殖が促進した。

以上の知見から、阻害薬によるSrc シグナルの逆説的活性化機構は、多目標キナーゼ阻害薬ががん治療において十分な効果を示していないことの要因である可能性が示唆された。これまで一般に、薬剤抵抗性変異は阻害薬を単に無効化するものと捉えられてきた。しかし、今回、親和性を低下させる変異が標的キナーゼに生じると、阻害薬が逆説的にキナーゼを活性化しうることが証明された。このことは、キナーゼ阻害薬に抵抗性を示すがんに対する治療戦略の再考を促している。ATP 競合阻害薬が標的キナーゼにアロステリックな作用を及ぼし、自己抑制的な構造をほどくことが c-Src 以外の複数のキナーゼにおいても報告されていることからも、効果的な分子標的薬の開発には、阻害薬が及ぼす標的分子へのアロステリック作用のより深い理解が必要であると考えられる。

この論文で使われている画像

参考文献

Apsel B., Blair J.A., Gonzalez B., Nazif T.M., Feldman M.E., Aizenstein B., Hoffman R., Williams R.L., Shokat K.M., and Knight Z.A. (2008). Targeted polypharmacology: Discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol 4, 691–699.

Azam M., Seeliger M.A., Gray N.S., Kuriyan J., and Daley G.Q. (2008). Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol 15, 1109-1118.

Bagrodia S., Taylor S.J., and Shalloway D. (1993). Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol. Cell. Biol 13, 1464-1470.

Bain J., Plater L., Elliott M., Shpiro N., Hastie C.J., Mclauchlan H., Klevernic I., Arthur J.S.C., Alessi D.R., and Cohen P. (2007). The selectivity of protein kinase inhibitors: A further update. Biochem. J 408, 297–315.

Bear J.E., Loureiro J.J., Libova I., Fässler R., Wehland J., and Gertler F.B. (2000). Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717-728.

Bishop A.C., Ubersax J.A., Pøtsch D.T., Matheos D.P., Gray N.S., Blethrow J., Shimizu E., Tsien J.Z., Schultz P.G., Rose M.D., et al. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401.

Blencke, S., Zech, B., Engkvist, O., Greff, Z., Orfi, L., Horváth, Z., Kéri, G., Ullrich, A., and Daub, H. (2004). Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol. 11, 691-701.

Boschelli D.H., Ye F., Wang Y.D., Dutia M., Johnson S.L., Wu B., Miller K., Powell D.W., Yaczko D., Young M., et al. (2001). Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J. Med. Chem 44, 3965-3977.

Brunton V.G., Avizienyte E., Fincham V.J., Serrels B., Metcalf C.A., Sawyer T.K., and Frame M.C. (2005). Identification of Src-specific phosphorylation site on focal adhesion kinase: Dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65, 1335-1342.

Cooper J., and Giancotti F.G. (2019). Integrin Signaling in Cancer: Mechanotransduction Stemness Epithelial Plasticity and Therapeutic Resistance. Cancer Cell 35, 347–367.

Dai, Z., and Pendergast, A.M. (1995). Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569-2582.

Druker B.J., Tamura S., Buchdunger E., Ohno S., Segal G.M., Fanning S., Zimmermann J., and Lydon N.B. (1996). Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells. Nat. Med 2, 561-566.

Espada J., and Martín-Pérez J. (2017). An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. In International Review of Cell and Molecular Biology 331, 83-122.Van Etten, R.A. (1999). Cycling, stressed-out and nervous: Cellular functions of c-Abl. Trends Cell Biol. 9, 179-186.

Fincham V.J., Brunton V.G., and Frame M.C. (2000). The SH3 Domain Directs Acto-Myosin-Dependent Targeting of v-Src to Focal Adhesions via Phosphatidylinositol 3-Kinase. Mol. Cell. Biol 20, 6518–6536.

Fujita A., Shishido T., Yuan Y., Inamoto E., Narumiya S., and Watanabe N. (2009). Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective abelson kinase: Requirements of myristoylation and src homology 3 domain. Mol. Pharmacol 75, 75-84.

Girotti M.R., Pedersen M., Sanchez-Laorden B., Viros A., Turajlic S., Niculescu-Duvaz D., Zambon A., Sinclair J., Hayes A., Gore M., et al. (2013). Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov 3, 158–167.

Girotti M.R., Lopes F., Preece N., Niculescu-Duvaz D., Zambon A., Davies L., Whittaker S., Saturno G., Viros A., Pedersen M., et al. (2015). Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85-96.

Gonfloni S., Frischknecht F., Way M., and Superti-Furga G. (1999). Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Nat. Struct. Biol 6, 760-764.

Gorre M.E., Mohammed M., Ellwood K., Hsu N., Paquette R., Nagesh Rao P., and Sawyers C.L. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876-880.

Gottlieb-Abraham E., Shvartsman D.E., Donaldson J.C., Ehrlich M., Gutman O., Martin G.S., and Henis Y.I. (2013). Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol. Biol. Cell 24, 3881–3895.

Green T.P., Fennell M., Whittaker R., Curwen J., Jacobs V., Allen J., Logie A., Hargreaves J., Hickinson D.M., Wilkinson R.W., et al. (2009). Preclinical anticancer activity of the potent oral Src inhibitor AZD0530. Mol. Oncol 3, 248-261.

Hamidi H., and Ivaska J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533-548.

Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J.C., Stokoe D., Gloor S.L., Vigers G., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435.

Heim J.B., Squirewell E.J., Neu A., Zocher G., Sominidi-Damodaran S., Wyles S.P., Nikolova E., Behrendt N., Saunte D.M., Lock-Andersen J., et al. (2017). Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc. Natl. Acad. Sci. U. S. A 114, 3933-3938.

Hildebrand J.D., Schaller M.D., and Parsons J.T. (1993). Identification of sequences required for the efficient localization of the Focal Adhesion Kinase, pp125(FAK), to cellular focal adhesions. J. Cell Biol 123, 993-1005.

Hirata, E., Girotti, M.R., Viros, A., Hooper, S., Spencer-Dene B., Matsuda M., Larkin J., Marais R., and Sahai E. (2015). Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK Signaling. Cancer Cell 27, 574-588.

Holderfield M., Merritt H., Chan J., Wallroth M., Tandeske L., Zhai H., Tellew J., Hardy S., Hekmat-Nejad M., Stuart D.D., et al. (2013). RAF Inhibitors Activate the MAPK Pathway by Relieving Inhibitory Autophosphorylation. Cancer Cell 23, 594-602.

Horzum, U., Ozdil, B., and Pesen-Okvur, D. (2014). Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56-59.

Jin T., Lavoie H., Sahmi M., David M., Hilt C., Hammell A., and Therrien M. (2017). RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nat. Commun 8, 1211.

Johannessen C.M., Boehm J.S., Kim S.Y., Thomas S.R., Wardwell L., Johnson L.A., Emery C.M., Stransky N., Cogdill A.P., Barretina J., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972.

Joseph E.W., Pratilas C.A., Poulikakos P.I., Tadi M., Wang W., Taylor B.S., Halilovic E., Persaud Y., Xing F., Viale A., et al. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. U. S. A 107, 14903-14908.

Karaman M.W., Herrgard S., Treiber D.K., Gallant P., Atteridge C.E., Campbell B.T., Chan K.W., Ciceri P., Davis M.I., Edeen P.T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26, 127-132.

Karoulia Z., Wu Y., Ahmed T.A., Xin Q., Bollard J., Krepler C., Wu X., Zhang C., Bollag G., Herlyn M., et al. (2016). An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell 30, 485-498.

Kim L.C., Song L., and Haura E.B. (2009). Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol 10, 587-595.

Krishnamurty R., Brigham J.L., Leonard S.E., Ranjitkar P., Larson E.T., Dale E.J., Merritt E.A., and Maly D.J. (2013). Active site profiling reveals coupling between domains in SRC-family kinases. Nat. Chem. Biol 9, 43–50.

Koshman Y.E., Engman S.J., Kim T., Iyengar R., Henderson K.K., and Samarel A.M. (2010). Role of FRNK tyrosine phosphorylation in vascular smooth muscle spreading and migration. Cardiovasc. Res 30, 2226–2233.

Lietha D., Cai X., Ceccarelli D.F.J., Li Y., Schaller M.D., and Eck M.J. (2007). Structural Basis for the Autoinhibition of Focal Adhesion Kinase. Cell 129, 1177-1187. Levinson N.M., amd Boxer S.G. (2014). A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nat. Chem. Biol 6, 127-132.

Liu X., Marengere L.E., Koch C.A., and Pawson T. (1993). The v-Src SH3 domain binds phosphatidylinositol 3’-kinase. Mol. Cell. Biol 13, 5225–5232.

Maruoka M., Sato M., Yuan Y., Ichiba M., Fujii R., Ogawa T., Ishida-Kitagawa N., Takeya T., and Watanabe N. (2012). Abi-1-bridged tyrosine phosphorylation of VASP by Abelson kinase impairs association of VASP to focal adhesions and regulates leukaemic cell adhesion. Biochem. J 441, 889–901.

Millius A., Watanabe N., and Weiner O.D. (2012). Diffusion capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by singlemolecule imaging. J. Cell Sci 125, 1165-1176.

Nakagawa H., Miki H., Nozumi M., Takenawa T., Miyamoto S., Wehland J., and Small J.V. (2003). IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J. Cell Sci 116, 2577-2583.

O’Hare T., Walters D.K., Stoffregen E.P., Jia T., Manley P.W., Mestan J., Cowan-Jacob S.W., Lee F.Y., Heinrich M.C., Deininger M.W.N., et al. (2005). In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65, 4500-4505.

Oikawa, T., Itoh, T., and Takenawa, T. (2008). Sequential signals toward podosome formation in NIH-src cells. J. Cell Biol. 182, 157-169.

Okamura H., and Resh M.D. (1995). p80/85 Cortactin associates with the Src SH2 domain and colocalizes with v-Src in transformed cells. J. Biol. Chem 270, 26613-26618.

Okuzumi T., Fiedler D., Zhang C., Gray D.C., Aizenstein B., Hoffman R., and Shokat K.M. (2009). Inhibitor hijacking of Akt activation. Nat. Chem. Biol 5, 484-493.

Packer L.M., Rana S., Hayward R., O’Hare T., Eide C.A., Rebocho A., Heidorn S., Zabriskie M.S., Niculescu-Duvaz I., Druker B.J., et al. (2011). Nilotinib and MEK Inhibitors Induce Synthetic Lethality through Paradoxical Activation of RAF in Drug-Resistant Chronic Myeloid Leukemia. Cancer Cell 20, 715-727.

Papa F.R., Zhang C., Shokat K., and Waiter P. (2003). Bypassing a Kinase Activity with an ATP-Competitive Drug. Science 302, 1533-1537.

Patwardhan P., and Resh M.D. (2010). Myristoylation and Membrane Binding Regulate c-Src Stability and Kinase Activity. Mol. Cell. Biol 30, 4094-4107.

Poulikakos P.I., Zhang C., Bollag G., Shokat K.M., and Rosen N. (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430.

Qiao, Y., Molina, H., Pandey, A., Zhang, J., and Cole, P.A. (2006). Chemical rescue of a mutant enzyme in living cells. Science 311, 1293-1297.

Roskoski R. (2015). Src protein-tyrosine kinase structure mechanism and small molecule inhibitors. Pharmacol. Res 94, 9-25.

Schindler T., Bornmann W., Pellicena P., Miller W.T., Clarkson B., and Kuriyan J. (2000). Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289, 1938-1942.

Schlaepfer, D.D., Hanks, S.K., Hunter, T., and Geer, P. Van Der (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 72, 786-791.

Shi, Y., Alin, K., and Goff, S.P. (1995). Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583-2597.

Skora L., Mestan J., Fabbro D., Jahnke W., and Grzesiek S. (2013). NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proc. Natl. Acad. Sci. U. S. A 110, E4437-4445.

Sulzmaier F.J., Jean C., and Schlaepfer D.D. (2014). FAK in cancer: Mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598-610.

Sonti R., Hertel-Hering I., Lamontanara A.J., Hantschel O., and Grzesiek S. (2018). ATP site ligands determine the assembly state of the abelson kinase regulatory core via the activation loop conformation. J. Am. Chem. Soc 140, 1863-1869.

Tanji M., Ishizaki T., Ebrahimi S., Tsuboguchi Y., Sukezane T., Akagi T., Frame M.C., Hashimoto N., Miyamoto S., and Narumiya S. (2010). mDia1 Targets v-Src to the Cell Periphery and Facilitates Cell Transformation, Tumorigenesis, and Invasion. Mol. Cell. Biol 110, 1279-1293.

Traxler P., Allegrini P.R., Brandt R., Brueggen J., Cozens R., Fabbro D., Grosios K., Lane H.A., McSheehy P., Mestan J., et al. (2004). AEE788: A dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64, 4931-4941. Verderame M.F. (1997). pp60(v-src) transformation of rat cells but not chicken cells strongly correlates with low-affinity phosphopeptide binding by the SH2 domain. Mol. Biol. Cell 8, 843-854.

Watanabe N. (2012). Fluorescence single-molecule imaging of actin turnover and regulatory mechanisms. Methods in Enzymology 505, 219-232.

Watanabe N., and Mitchison T.J. (2002). Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083-1086.

Wilhelm S., Carter C., Lynch M., Lowinger T., Dumas J., Smith R.A., Schwartz B., Simantov R., and Kelley S. (2006). Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov 10, 835-844.

Xu W., Harrison S.C., and Eck M.J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595-602.

Xu, W., Doshi, A., Lei, M., Eck, M.J., and Harrison, S.C. (1999). Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell. 3, 629-638.

Yamashiro S., and Watanabe N. (2014). A new link between the retrograde actin flow and focal adhesions. J. Biochem 156, 239-248.

Yeatman TJ. (2004). A renaissance for SRC. Nat Rev Cancer 4, 470-480.

Yeo M.G., Partridge M.A., Ezratty E.J., Shen Q., Gundersen G.G., and Marcantonio E.E. (2006). Src SH2 Arginine 175 Is Required for Cell Motility: Specific Focal Adhesion Kinase Targeting and Focal Adhesion Assembly Function. Mol. Cell. Biol 26, 4399–4409.

Zhang C., Lopez M.S., Dar A.C., Ladow E., Finkbeiner S., Yun C.H., Eck M.J., and Shokat K.M. (2013). Structure-guided inhibitor design expands the scope of analog-sensitive kinase technology. ACS Chem. Biol. 8, 1931–1938.

Zhang S., Huang W.C., Li P., Guo H., Poh S.B., Brady S.W., Xiong Y., Tseng L.M., Li S.H., Ding, Z., et al. (2011). Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat. Med 17, 461-469.

Zhang S., and Yu D. (2012). Targeting Src family kinases in anti-cancer therapies: Turning promise into triumph. Trends Pharmacol. Sci 33, 122-128.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る