リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ratio of axial length to corneal radius in Japanese patients and accuracy of intraocular lens power calculation based on biometric data (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ratio of axial length to corneal radius in Japanese patients and accuracy of intraocular lens power calculation based on biometric data (本文)

大本, 美紀 慶應義塾大学

2022.02.14

概要

PURPOSE:
To evaluate the features of the axial lengthto-corneal radius (AL/CR) ratio in Japanese patients with cataracts and to determine the accuracy of intraocular lens (IOL) power calculation formulas according to the AL/CR features and the axial length (AL).

DESIGN:
Retrospective observational case series.

METHODS:
Setting was a clinical practice. Patient population was a total of 1,135 eyes (1,135 patients) with cataracts. Observation procedures included measurement of the AL and corenal radius (CR) by optical biometry and evaluation of the refractive outcomes by using the SRK/T, Holladay 1, Hoffer Q, Haigis, and Barrett Universal II formulas. Main outcome measurements were the features of the AL/CR ratio and the accuracy of IOL power calculations based on the AL/CR ratio and the AL.

RESULTS:
The mean AL/CR ratio was 3.15 ± 0.19. Significant weak negative correlations were observed between the spherical equivalent (SE) and AL (r [ L0.7489; P < .001) and between the SE and AL/CR ratio (r [ L0.8069; P < .001); no correlation was found between the SE and CR (r [ 0.0208, P [ .483). For medium ALs and high AL/CR ratios, the SRK/T formula performed less accurately. For long ALs and high AL/CR ratios, the Holladay 1 and Hoffer Q formulas performed less accurately. The Barrett Universal II formula performed well across a range of ALs and AL/CR ratios.

CONCLUSIONS:
The AL/CR ratio explained the total variation in the SE better than the AL alone. Surgeons should pay attention to the selection of IOL power calculation formulas in eyes with high AL/CR ratios. (Am J Ophthalmol 2020;218:320–329.

この論文で使われている画像

参考文献

1. Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000;238:765–773.

2. Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg 2001;27:861–867.

3. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2007;85:472–485.

4. Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg 2008;34:368–376.

5. Sahin A, Hamrah P. Clinically relevant biometry. Curr Opin Ophthalmol 2012;23:47–53.

6. Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg 1993;19: 700–712.

7. Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/ T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990;16:333–340.

8. Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 1988;14:17–24.

9. Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 1993;19:713–720.

10. Narvaez J, Zimmerman G, Stulting RD, Chang DH. Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas. J Cataract Refract Surg 2006;32:2050–2053.

11. Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg 2011;37:63–71.

12. Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg 2016;42:1490–1500.

13. Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3-D ""super surface"" combining modern intraocular lens formulas to generate a ""super formula"" and maximize accuracy. JAMA Ophthalmol 2015;133:1431–1436.

14. Clarke GP. FullMonte IOL. Available at: https://fullmonteiol.com/. Accessed January 7, 2017.

15. Hill WE. Hill-RBF method. Available at: http://rbfcalculator.com/online/index. html. Accessed January 7, 2017.

16. Kane JX, Van Heerden A, Atik A, Petsoglou C. Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg 2017;43:333–339.

17. Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 1997;38:334–340.

18. Dandona R, Dandona L, Srinivas M, et al. Refractive error in children in a rural population in India. Invest Ophthalmol Vis Sci 2002;43:615–622.

19. Kempen JH, Mitchell P, Lee KE, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 2004;122:495–505.

20. Bourne RR, Dineen BP, Ali SM, Noorul Huq DM, Johnson GJ. Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and low vision survey of Bangladesh. Ophthalmology 2004;111:1150–1160.

21. Xu L, Li J, Cui T, et al. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology 2005;112:1676–1683.

22. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T, Tajimi Study G. Refractive errors in an elderly Japanese population: the Tajimi Study. Ophthalmology 2008;115:363–370 e3.

23. Nakamura Y, Nakamura Y, Higa A, et al. Refractive errors in an elderly rural Japanese population: the Kumejima study. PLoS One 2018;13:e0207180.

24. Savini G, Negishi K, Hoffer KJ, Schiano Lomoriello D. Refractive outcomes of intraocular lens power calculation using different corneal power measurements with a new optical biometer. J Cataract Refract Surg 2018;44:701–708.

25. Grosvenor T. High axial length/corneal radius ratio as a risk factor in the development of myopia. Am J Optom Physiol Opt 1988;65:689–696.

26. He X, Zou H, Lu L, et al. Axial length/corneal radius ratio: association with refractive state and role on myopia detection combined with visual acuity in Chinese schoolchildren. PLoS One 2015;10:e0111766.

27. Ip JM, Huynh SC, Kifley A, et al. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Invest Ophthalmol Vis Sci 2007;48:4846–4853.

28. Ojaimi E, Rose KA, Morgan IG, et al. Distribution of ocular biometric parameters and refraction in a population-based study of Australian children. Invest Ophthalmol Vis Sci 2005; 46:2748–2754.

29. Ip JM, Huynh SC, Robaei D, et al. Ethnic differences in the impact of parental myopia: findings from a population-based study of 12-year-old Australian children. Invest Ophthalmol Vis Sci 2007;48:2520–2528.

30. Kimura S, Hasebe S, Miyata M, Hamasaki I, Ohtsuki H. Axial length measurement using partial coherence interferometry in myopic children: repeatability of the measurement and comparison with refractive components. Jpn J Ophthalmol 2007;51:105–110.

31. Gonzalez Blanco F, Sanz Fernandez JC, Munoz Sanz MA. Axial length, corneal radius, and age of myopia onset. Optom Vis Sci 2008;85:89–96.

32. Iyamu E, Iyamu J, Obiakor CI. The role of axial lengthcorneal radius of curvature ratio in refractive state categorization in a Nigerian population. ISRN Ophthalmol 2011;2011: 138941.

33. User Group for Laser Interference Biometry. Optimized IOL Constants for the ZEISS IOLMaster calculated from patient data on file (as of Oct 31, 2016). [Accessed 14 May 2020].

34. Mallen EA, Gammoh Y, Al-Bdour M, Sayegh FN. Refractive error and ocular biometry in Jordanian adults. Ophthalmic Physiol Opt 2005;25:302–309.

35. Warrier S, Wu HM, Newland HS, et al. Ocular biometry and determinants of refractive error in rural Myanmar: the Meiktila Eye Study. Br J Ophthalmol 2008;92:1591–1594.

36. Pan CW, Wong TY, Chang L, et al. Ocular biometry in an urban Indian population: the Singapore Indian Eye Study (SINDI). Invest Ophthalmol Vis Sci 2011;52:6636–6642.

37. Hashemi H, Khabazkhoob M, Miraftab M, et al. Axial lengthto-corneal radius of curvature ratio and refractive errors. J Ophthalmic Vis Res 2013;8:220–226.

38. Badmus SA, Ajaiyeoba AI, Adegbehingbe BO, Onakpoya OH, Adeoye AO. Axial length/corneal radius of curvature ratio and refractive status in an adult Nigerian population. Niger J Clin Pract 2017;20:1328–1334.

39. Wong TY, Foster PJ, Ng TP, Tielsch JM, Johnson GJ, Seah SK. Variations in ocular biometry in an adult Chinese population in Singapore: the Tanjong Pagar Survey. Invest Ophthalmol Vis Sci 2001;42:73–80.

40. Cao X, Hou X, Bao Y. The ocular biometry of adult cataract patients on lifeline express hospital eye-train in rural China. J Ophthalmol 2015;2015:171564.

41. He J, Lu L, He X, et al. The relationship between crystalline lens power and refractive error in older Chinese adults: the Shanghai Eye Study. PLoS One 2017;12:e0170030.

42. Foo VH, Verkicharla PK, Ikram MK, et al. Axial length/ corneal radius of curvature ratio and myopia in 3-year-old children. Transl Vis Sci Technol 2016;5:5.

43. Scheiman M, Gwiazda J, Zhang Q, et al. Longitudinal changes in corneal curvature and its relationship to axial length in the Correction of Myopia Evaluation Trial (COMET) cohort. J Optom 2016;9:13–21.

44. He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 2015;314:1142–1148.

45. Grosvenor T, Scott R. Role of the axial length/corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci 1994;71:573–579.

46. He J, Xu X, Zhu J, et al. Lens power, axial length-to-corneal radius ratio, and association with diabetic retinopathy in the adult population with type 2 diabetes. Ophthalmology 2017; 124:326–335.

47. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet 2012; 379(9827):1739–1748.

48. Yotsukura E, Torii H, Inokuchi M, et al. Current prevalence of myopia and association of myopia with environmental factors among schoolchildren in Japan. JAMA Ophthalmol 2019; 137:1233–1239.

49. Fink AM, Gore C, Rosen ES. Refractive lensectomy for hyperopia. Ophthalmology 2000;107:1540–1548.

50. Holladay JT, Gills JP, Leidlein J, Cherchio M. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology 1996;103: 1118–1123.

51. Gokce SE, Zeiter JH, Weikert MP, Koch DD, Hill W, Wang L. Intraocular lens power calculations in short eyes using 7 formulas. J Cataract Refract Surg 2017;43: 892–897.

52. Shrivastava AK, Behera P, Kumar B, Nanda S. Precision of intraocular lens power prediction in eyes shorter than 22 mm: an analysis of 6 formulas. J Cataract Refract Surg 2018;44:1317–1320.

53. Reitblat O, Levy A, Kleinmann G, Lerman TT, Assia EI. Intraocular lens power calculation for eyes with high and low average keratometry readings: comparison between various formulas. J Cataract Refract Surg 2017;43: 1149–1156.

54. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology 2018;125:169–178.

55. Sheard RM, Smith GT, Cooke DL. Improving the prediction accuracy of the SRK/T formula: the T2 formula. J Cataract Refract Surg 2010;36:1829–1834.

56. Omoto MK, Torii H, Masui S, Ayaki M, Tsubota K, Negishi K. Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Sci Rep 2019;9:6557.

57. Zhang Z, Miao Y, Fang X, Luo Q, Wang Y. Accuracy of the Haigis and SRK/T formulas in eyes longer than 29.0 mm and the influence of central corneal keratometry reading. Curr Eye Res 2018;43:1316–1321.

58. Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg 2000;26: 1233–1237.

参考文献をもっと見る