リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel pathway of DNA double-strand break formation that is independent of loop-axis tethering」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel pathway of DNA double-strand break formation that is independent of loop-axis tethering

Ying, Zhang 大阪大学 DOI:10.18910/89563

2022.09.22

概要

Meiotic double-strand break (DSB) formation at early prophase I, which initiates homologous recombination, is essential for the meiosis. In budding yeast meiosis, Spo11, a topoisomerase VI-like protein, catalyzes DSB formation on chromatin loops. Spo11 induces DSBs by interacting with the RMM complex (Rec114–Mer2–Mei4) on the chromosome axis through loop-axis tethering, which is dependent of Spp1. Histone modification is essential for loop-axis tethering. PAF1C mediates histone H2BK123 ubiquitination, and Set1 then recognizes the ubiquitinated sites and subsequently methylates histone 3 lysine 4 (H3K4). Methylated H3K4 marks on chromatin loops are hotspots for DSB formation. Spp1 binds methylated H3K4 and tethers the hotspot to axis-bound Mer2, resulting in loops tethered to the axis. Then, Mer2 activates Spo11 to induce DSB formation. However, single paf1c, set1, or spp1 mutants show a high level of DSBs, suggesting the presence of a loop-axis-tethering-independent regulatory pathway for DSB formation. In this thesis research, I found that the paf1c (rtf1 and cdc73), and set1 mutants showed a synergistic decrease in the presence of a Myc-tag on either Rec114 or Mer2 in DSB formation. However, this DSB decrease was not induced in the spp1, a mutant in the most essential gene in the loop-axis tethering, with Myc-tag on RMM. Hence, in DSB formation, PAF1C and Set1 both play a role in meiotic DSB formation independent of the Spp1-mediated loop-axis tethering. I speculate that PAF1C and Set1 may collaboratively methylate a component of the DSB machinery and this collaboration is critical for DSB formation in the absence of loop-axis tethering.

この論文で使われている画像

参考文献

1. Li, W., et al., Editorial: Meiosis: From Molecular Basis to Medicine. Front Cell Dev Biol, 2021. 9: p. 812292.

2. Duina, A.A., M.E. Miller, and J.B. Keeney, Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics, 2014. 197(1): p. 33-48.

3. Taddei, A. and S.M. Gasser, Structure and function in the budding yeast nucleus. Genetics, 2012. 192(1): p. 107-29.

4. Sou, I.F., et al., Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J, 2021. 478(20): p. 3791-3805.

5. Stahl, F.W., et al., Does crossover interference count in Saccharomyces cerevisiae? Genetics, 2004. 168(1): p. 35-48.

6. Shinohara, M., et al., Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci U S A, 2000. 97(20): p. 10814-9.

7. Hinch, A.G., et al., The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates. Mol Cell, 2020. 79(4): p. 689-701 e10.

8. Sasanuma, H., et al., Remodeling of the Rad51 DNA strand-exchange protein by the Srs2 helicase. Genetics, 2013. 194(4): p. 859-72.

9. Shinohara, A., H. Ogawa, and T. Ogawa, Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell, 1992. 69(3): p. 457-70.

10. Lee, M.S., et al., The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res, 2021. 49(13): p. 7537-7553.

11. Börner, G.V., N. Kleckner, and N. Hunter, Crossover/Noncrossover Differentiation, Synaptonemal Complex Formation, and Regulatory Surveillance at the Leptotene/Zygotene Transition of Meiosis. Cell, 2004. 117(1): p. 29-45.

12. Zickler, D. and N. Kleckner, Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol, 2015. 7(6).

13. Hunter, N. and N. Kleckner, The single-end invasion: an asymmetric intermediate at the doublestrand break to double-holliday junction transition of meiotic recombination. Cell, 2001. 106(1): p. 59-70.

14. Hollingsworth, N.M., Deconstructing meiosis one kinase at a time: polo pushes past pachytene. Genes Dev, 2008. 22(19): p. 2596-600.

15. Sourirajan, A. and M. Lichten, Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev, 2008. 22(19): p. 2627-32.

16. Marston, A.L., Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics, 2014. 196(1): p. 31-63.

17. Dawson, R.E.M.a.D.S., Attaching to spindles before they form. Cell Cycle, 2013. 12(13): p. 2011–2015.

18. Liu, T. and J. Huang, DNA End Resection: Facts and Mechanisms. Genomics Proteomics Bioinformatics, 2016. 14(3): p. 126-130.

19. Cloud, V., et al., Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science, 2012. 337(6099): p. 1222-5.

20. Cooper, T.J., V. Garcia, and M.J. Neale, Meiotic DSB patterning: A multifaceted process. Cell Cycle, 2016. 15(1): p. 13-21.

21. Lam, I. and S. Keeney, Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol, 2014. 7(1): p. a016634.

22. Schneider, J., et al., Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell, 2005. 19(6): p. 849-56.

23. Mersman, D.P., et al., Charge-based interaction conserved within histone H3 lysine 4 (H3K4) methyltransferase complexes is needed for protein stability, histone methylation, and gene expression. J Biol Chem, 2012. 287(4): p. 2652-65.

24. Sharma, A.K. and M.J. Hendzel, The relationship between histone posttranslational modification and DNA damage signaling and repair. Int J Radiat Biol, 2019. 95(4): p. 382-393.

25. Campos, E.I. and D. Reinberg, Histones: annotating chromatin. Annu Rev Genet, 2009. 43: p. 559-99.

26. Xu, Y. and B.D. Price, Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle, 2011. 10(2): p. 261-7.

27. Rice, J.C. and C.D. Allis, Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol, 2001. 13(3): p. 263-73.

28. Hayashi, M., et al., A Conserved Histone H3-H4 Interface Regulates DNA Damage Tolerance and Homologous Recombination during the Recovery from Replication Stress. Mol Cell Biol, 2021. 41(4).

29. Thakre, P.K., et al., Previously uncharacterized amino acid residues in histone H3 and H4 mutants with roles in DNA damage repair response and cellular aging. FEBS J, 2019. 286(6): p. 1154-1173.

30. Hunt, C.R., et al., Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res, 2013. 179(4): p. 383-92.

31. Goodarzi, A.A. and P.A. Jeggo, The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int J Mol Sci, 2012. 13(9): p. 11844-60.

32. Wright, D.E., C.Y. Wang, and C.F. Kao, Histone ubiquitylation and chromatin dynamics. Front Biosci (Landmark Ed), 2012. 17: p. 1051-78.

33. Trujillo, K.M. and M.A. Osley, A role for H2B ubiquitylation in DNA replication. Mol Cell, 2012. 48(5): p. 734-46.

34. Meas, R. and P. Mao, Histone ubiquitylation and its roles in transcription and DNA damage response. DNA Repair (Amst), 2015. 36: p. 36-42.

35. Spannhoff, A., W. Sippl, and M. Jung, Cancer treatment of the future: inhibitors of histone methyltransferases. Int J Biochem Cell Biol, 2009. 41(1): p. 4-11.

36. Kirmizis, A., et al., Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 2007. 449(7164): p. 928-32.

37. Faucher, D. and R.J. Wellinger, Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet, 2010. 6(8).

38. Klose, R.J., et al., Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Mol Cell Biol, 2007. 27(11): p. 3951-61.

39. Nichol, J.N., et al., H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer. Adv Cancer Res, 2016. 131: p. 59-95.

40. McDaniel, S.L., et al., H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity. Cell Rep, 2017. 19(11): p. 2371-2382.

41. Nguyen, A.T. and Y. Zhang, The diverse functions of Dot1 and H3K79 methylation. Genes Dev, 2011. 25(13): p. 1345-58.

42. Steiner, W.W. and E.M. Steiner, Fission yeast hotspot sequence motifs are also active in budding yeast. PLoS One, 2012. 7(12): p. e53090.

43. TD., P., Meiotic recombination hot spots and cold spots. Nat Rev Genet., 2001. 2(5): p. 360- 369.

44. Martin-Castellanos, C., K.R. Fowler, and G.R. Smith, Making chromosomes hot for breakage. Cell Cycle, 2013. 12(9): p. 1327-8.

45. Lam, I., N. Mohibullah, and S. Keeney, Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast. Methods Mol Biol, 2017. 1471: p. 51-98.

46. Murakami, H. and S. Keeney, Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev, 2008. 22(3): p. 286-92.

47. Johnson, D., et al., Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature, 2021. 594(7864): p. 572-576.

48. Li, J., G.W. Hooker, and G.S. Roeder, Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics, 2006. 173(4): p. 1969- 81.

49. Panizza, S., et al., Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell, 2011. 146(3): p. 372-83.

50. Sasanuma, H., et al., Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev, 2008. 22(3): p. 398-410.

51. Claeys Bouuaert, C., et al., DNA-driven condensation assembles the meiotic DNA break machinery. Nature, 2021. 592(7852): p. 144-149.

52. Maleki, S., et al., Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma, 2007. 116(5): p. 471-86.

53. Li, J., G.W. Hooker, and G.S. Roeder, Saccharomyces cerevisiae Mer2, Mei4 and Rec114 Form a Complex Required for Meiotic Double-Strand Break Formation. Genetics, 2006. 173(4): p. 1969-1981.

54. Gobbini, E., et al., Functions and regulation of the MRX complex at DNA double-strand breaks. Microb Cell, 2016. 3(8): p. 329-337.

55. Ball, L.G., et al., The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One, 2014. 9(10): p. e109292.

56. Nakai, W., et al., Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst), 2011. 10(1): p. 102-10.

57. Jaehning, J.A., The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta, 2010. 1799(5-6): p. 379-88.

58. Gothwal, S.K., et al., The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae. Genetics, 2016. 202(2): p. 497-512.

59. Warner, M.H., K.L. Roinick, and K.M. Arndt, Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol, 2007. 27(17): p. 6103-15.

60. Tomson, B.N., et al., Identification of a role for histone H2B ubiquitylation in noncoding RNA 3'- end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae. Genetics, 2011. 188(2): p. 273-89.

61. Piro, A.S., et al., Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proc Natl Acad Sci U S A, 2012. 109(27): p. 10837-42.

62. Van Oss, S.B., et al., The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6. Mol Cell, 2016. 64(4): p. 815- 825.

63. Amrich, C.G., et al., Cdc73 subunit of Paf1 complex contains C-terminal Ras-like domain that promotes association of Paf1 complex with chromatin. J Biol Chem, 2012. 287(14): p. 10863- 75.

64. Shilatifard, A., The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem, 2012. 81: p. 65-95.

65. Williamson K, S.V., et al. , Catalytic and functional roles of conserved amino acids in the SET domain of the S. cerevisiae lysine methyltransferase Set1. PLoS One, 2013. 8(3): p. e57974.

66. Sommermeyer, V., et al., Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell, 2013. 49(1): p. 43-54.

67. Acquaviva, L., et al., The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science, 2013. 339(6116): p. 215-8.

68. de Massy, B., Spp1 links sites of meiotic DNA double-strand breaks to chromosome axes. Mol Cell, 2013. 49(1): p. 3-5.

69. S.Keeney, M.J.N., Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans., 2006. 34(Pt4): p. 523-5.

70. Borner, G.V. and R.S. Cha, Analysis of Yeast Sporulation Efficiency, Spore Viability, and Meiotic Recombination on Solid Medium. Cold Spring Harb Protoc, 2015. 2015(11): p. 1003-8.

71. Schwacha, A. and N. Kleckner, Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell, 1997. 90(6): p. 1123- 35.

72. Kim, K.P., et al., Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell, 2010. 143(6): p. 924-37.

73. S.K. Gothwal, et al., The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae. Genetics, 2016. 202(2): p. 497-512.

74. Taylor, M.R.G., et al., Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell, 2015. 162(2): p. 271-286.

75. Carballo, J.A., et al., Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet, 2013. 9(6): p. e1003545.

76. Malone, R.E., et al., The signal from the initiation of meiotic recombination to the first division of meiosis. Eukaryot Cell, 2004. 3(3): p. 598-609.

77. Nag, D.K., et al., Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast. Mol Genet Genomics, 2006. 276(4): p. 313-21.

78. Sasanuma, H., et al., Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Res, 2007. 35(4): p. 1119-33.

79. Kugou, K., et al., Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Mol Biol Cell, 2009. 20(13): p. 3064-76.

80. Bishop, D.K., et al., DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992. 69(3): p. 439-56.

81. Lee, J.S., et al., Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell, 2007. 131(6): p. 1084-96.

82. Worden, E.J. and C. Wolberger, Activation and regulation of H2B-Ubiquitin-dependent histone methyltransferases. Curr Opin Struct Biol, 2019. 59: p. 98-106.

83. Rumpf, C., et al., Casein kinase 1 is required for efficient removal of Rec8 during meiosis I. Cell Cycle, 2010. 9(13): p. 2657-62.

84. Wood, A., et al., The Paf1 complex is essential for histone monoubiquitination by the Rad6- Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem, 2003. 278(37): p. 34739-42.

85. Adam, C., et al., The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes. PLoS Genet, 2018. 14(2): p. e1007223.

86. Acquaviva, L., et al., Spp1 at the crossroads of H3K4me3 regulation and meiotic recombination. Epigenetics, 2013. 8(4): p. 355-360.

87. Latham, J.A., et al., Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell, 2011. 146(5): p. 709-19.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る