リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A New Role of Srs2 DNA Helicase, anti-recombinase, during Meiosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A New Role of Srs2 DNA Helicase, anti-recombinase, during Meiosis

Subhan Memon Sakurai, Hana 大阪大学 DOI:10.18910/82031

2021.03.24

概要

Homologous recombination (HR) is involved in the repair of DNA double-strand breaks (DSBs) in both mitosis and meiosis. HR between homologous chromosomes provides a physical linkage between the chromosomes, which ensures correct segregation of the chromosomes during meiosis I (MI). In HR, Rad51, a RecA homolog, plays a key role in homology search and strand exchange by forming a helical filament on the single- stranded DNA (ssDNA). Rad51 is required for HR in both mitosis and meiosis. In addition to Rad51, a meiosis-specific RecA homolog, Dmc1, is also essential for meiotic recombination. In meiotic recombination, Dmc1 is the main strand- exchange protein for recombination between homologous chromosomes, while Rad51 assists Dmc1-assembly. Assembly and disassembly of Rad51 and Dmc1 filaments are highly dynamic and strictly controlled by several positive and negative factors. In mitosis, Srs2 DNA helicase functions as a negative regulator for HR and indeed has been shown to dislodge Rad51 filaments, thereby inhibiting Rad51-dependent strand invasion. Srs2 is also critical for meiotic recombination. However, its role in HR in meiosis remains to be elusive.

In this study, in order to analyze a role for Srs2 during meiosis, the effect of SRS2 deletion in S. cerevisiae meiosis has been studied in more detail. Previous works have shown that the srs2 deletion mutant shows reduced sporulation, lowered spore viability, and slight decrease in recombination products. However, the decrease in recombination products does not fully explain the observed low spore viability of the mutant. While the mutant shows wild-type like assembly and disassembly of Rad51 and Dmc1 at early stages of meiosis, it later exhibits a unique defect in the assembly of Rad51: the formation of a large aggregate containing Rad51, but not Dmc1. In this thesis, it was shown that, in the absence of Srs2, during meiotic DSB repair in early prophase, abnormal loading of Rad51 that could cause multiple-invasion. This early defect in Rad51 loading could be the precursor for the formation of Rad51 aggregates observed during late meiosis in the srs2 mutant. Additionally, the depletion of Srs2 after mid-prophase I exit was sufficient to induce the formation of the Rad51 aggregates, suggesting that Srs2 plays a novel role in late prophase I.

In conclusion, Srs2 regulates the formation of Rad51 filaments separately during the meiotic DSB repair event and additionally, at the resolution step of recombination intermediates, most likely by it’s translocase activity. In this thesis, the role of Srs2 in coupling the completion of recombination with consecutive chromosomal events will be further discussed.
PhD application Publication

この論文で使われている画像

参考文献

Abeysinghe, S. S., Chuzhanova, N., and Cooper, D. N. (2006). Gross deletions and translocations in human genetic disease. Genome Dyn., 1, 17-34.

Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F. (1992). Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins, Mol. Cell. Biol., 12, 3224–3234.

Aboussekhra, A., Chanet, R., Zgaga, Z., Cassier-Chauvat, C., Heude, M., and Fabre, F. (1989). RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res., 17, 7211– 7219.

Aguilera, A., and Klein, H. L. (1988). Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae: I. Isolation and genetic characterization of hyper-recombination mutations. Genetics, 119, 779 –790

Akamatsu Y, and Jasin M (2010) Role for the Mammalian Swi5-Sfr1 Complex in DNA Strand Break Repair through Homologous Recombination. PLOS Genetics, 6 (10): e1001160.

Alani, E. (2008). A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics, 179, 747–55.

Alani, E., Padmore, R., and Kleckner, N. (1990). Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell, 61(3), 419-436.

Allers, T., and Lichten, M. (2001). Differential timing and control of noncrossover and crossover recombination during meiosis. Cell, 106, 47–57.

Antony, E., Tomko, E. J., Xiao, Q., Krejci, L., Lohman, T. M., and Ellen-berger, T. (2009). Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell, 35, 105–115

Arevalo-Rodriguez, M., Wu, X., Hanes, S.D., and Heitman, J. (2004). Prolyl isomerases in yeast. Front. Biosci. 9, 2420–2446.

Armstrong, A. A., Mohideen, F., and Lima, C. D. (2012). Recognition of SUMO modified PCNA requires tandem receptor motifs in Srs2. Nature, 483, 59–63.

Barber, L. J., Youds, J. L., Ward, J. D., Mcllwraith, M. J., O’Neil, N. J., Petalcorin, M. I., Martin, J. S., Collis, S. J., Cantor, S. B., Auclair, M., Tissenbaum, H., West, S. C., Rose, A. M., and Boulton, S. J. (2008). RTEL1 maintains genomic stability by suppressing homologous recombination. Cell, 135 (2), 261-71.

Barbour, L., and Xiao, W. (2003). Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat. Res., 532, 137–55.

Belshaw, P. J., Ho, S. N., Crabtree, G. R., and Schreiber, S. L. (1996). Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci., 93 (10), 4604-7.

Benjamin, K. R., Zhang, C., Shokat, K. M., and Herskowitz, I. (2003). Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev., 17(12), 1524- 1539.

Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., and Forterre, P. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature, 386(6623), 414-7.

Bernstein, K. A., Reid, R. J. D., Sunjevaric, I., Demuth, K., Burgess, R. C., and Rothstein, R. (2011). The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell, 22 (9), 1599-1607.

Bishop, D. K., Park, D., Xu, L., and Kleckner, N. (1992). DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 69 (3), 439-56.

Blackford, A. N., and Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol. Cell, 66, 801-817.

Borde, V., and de Massy, B. (2013). Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Current opinion in genetics & development, 23 (2), 147–155.

Bolcun-Filas, E., and Schimenti, J. C. (2012). Genetics of meiosis and recombination in mice. International review of cell and molecular biology, 298, 179–227.

Börner, G. V., Kleckner, N., and Hunter, N., (2004). Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell, 117, 29–45.

Brill, S. J., and Stillman, B. (1991). Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev., 5(9), 1589-1600.

Broomfield, S., and Xiao, W. (2002). Sup.pression of genetic defects within the RAD6 path- way by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res., 30, 732–739.

Burgess, R. C., Lisby, M., Altmannova, V., Krejci, L., Sung, P., and Rothstein, R. (2009). Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J. Cell Biol., 185 (6), 969-81.

Burkovics, P., Sebesta, M., Sisakova, A., Plault, N., Szukacsov, V., Robert, T., Pinter, L., Marini, V., Kolesar, P., Haracska, L., Gangloff, S., and Krejci, L. (2013). Srs2 mediates PCNA-SUMO- dependent inhibition of DNA repair synthesis. EMBO J., 32, 742–755.

Callender, T. L., Laureau, R., Wan, L., Chen, X., Sandhu, R., et al., (2016). Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLoS Genet., 12, e1006226.

Cao, L., Alani, E., and Kleckner, N. (1990). A pathway for generation and processing of double- strand breaks during meiotic recombination in S. cerevisiae. Cell, 61 (6), 1089-1101.

Carballo, J. A., Johnson, A. L., Sedgwick, S. G., and Cha, R. S. (2008). Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell, 132, 758–770.

Carlile, T. M., and Amon, A. (2008). Meiosis I is established through division-specific translational control of a cyclin. Cell, 133 (2), 280-291.

Carpenter A. T. C. (1994). Chiasma function. Cell, 77, 959-962.

Carter, S. D., Vigasová, D., Chen, J., Chovanec, M., and Aström, S. U. (2009). Nej1 recruits the Srs2 helicase to DNA double-strand breaks and supports repair by a single-strand annealing-like mechanism. Proc. Natl. Acad. Sci., 106 (29), 12037-42.

Chanet, R., Heude, M., Adjiri, A., Maloisel, L., and Fabre, F. (1996). Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol., 16, 4782– 4789.

Chen, H., Lisby, M., and Symington, L. S. (2013). RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell, 50(4), 589-600.

Chen, J., Zheng, X.F., Brown, E.J., and Schreiber, S.L. (1995). Identification of an 11- kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12- rapamycin- associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci., 92, 4947–4951.

Chen, X., Gaglione, R., Leong, T., Bednor, L., de los Santos, T., et al., (2018). Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene regulator Ndt80. PloS Genetics, 14(11), e1007832.

Chen, X., Suhandynata, R. T., Sandhu, R., Rockmill, B., Mohibullah, N., et al., (2015). Phosphorylation of the synaptonemal complex protein Zip1 regulates the crossover/noncrossover decision during yeast meiosis. PLoS Biology, 13(12), e1002329.

Chiolo, I., Carotenuto, W., Maffioletti, G., Petrini, J. H., Foiani, M., and Liberi, G. (2005). Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Molecular and cellular biology, 25 (13), 5738–5751.

Chiolo, I., Minoda, A., Colmenares, S. U., Polyzos, A., Costes, S. V., and Karpen, G. H. (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell, 144 (5), 732–744.

Chiruvella, K. K., Liang, Z., and Wilson, T. E. (2013). Repair of double-strand breaks by end joining. Cold Spring Harbor perspectives in biology, 5 (5).

Ciccia, A., and Elledge, S. J. (2010). The DNA damage response: making it safe to play with knives. Mol. Cell, 40, 179-204.

Clarke, D. J., Johnson, R. T., and Downes, C. S. (1993). Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J. Cell Sci., 105 (2), 563-9.

Cloud, V., Chan, Y. L., Grubb, J., Budke, B., and Bishop, D. K. (2012). Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science (New York, N.Y.), 337 (6099), 1222–1225.

Colavito, S., Macris-Kiss, M., Seong, C., Gleeson, O., Greene, E. C., Klein, H. L., Krejci, L., and Sung, P. (2009). Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res., 37, 6754 – 6764.

Cole, G. M., Schild, D., and Mortimer, R. K., (1989). Two DNA repair and recombination genes in Saccharomyces cerevisiae, RAD52 and RAD54, are induced during meiosis. Mol. Cell Biol., 9(7), 3101-4.

De Muyt, A., Jessop, L., Kolar, E., Sourirajan, A., Chen, J., et al., (2012). BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Molecular Cell, 46, 43–53.

Difilippantonio, M. J., Zhu, J., Chen, H. T., Meffre, E., Nussenzweig, M. C., Max, E. E., Ried, T., and Nussenzweig, A. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 404 (6777), 510–514.

Ding, H., Schertzer, M., Wu, X., Gertsenstein, M., Selig, S., Kammori, M., Pourvali, R., Poon, S., Vulto, I., Chavez, E., et al., (2004). Regulation of murine telomere length by Rtel: An essential gene encoding a helicase-like protein. Cell, 117, 873–886.

Dong, H., and Roeder, G. S. (2000). Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. The Journal of Cell Biology, 148, 417–426.

Downs, J. A., Lowndes, N. F., and Jackson, S. P. (2000). A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408(6815), 1001-1004.

Fabre, F., Chan, A., Heyer, W. D., and Gangloff, S. (2002). Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U.S.A., 99, 16887–16892.

Falck, J., Coates, J., and Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434, 605-611.

Fink, M., Imholz, D., and Thoma, F. (2007). Contribution of the serine 129 of histone H2A to chromatin structure. Mol. Cell Biol., 27(10), 3589-3600.

Fung, C. W., Mozlin, A. M., and Symington, L. S. (2009). Suppression of the double-strand- break-repair defect of the Saccharomyces cerevisiae rad57 mutant. Genetics, 181 (4), 1195-1206.

Furuse, M., Nagase, Y., Tsubouchi, H., Murakami-Murofushi, K., Shibata, T., and Ohta, K. (1998). Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. The EMBO journal, 17 (21), 6412–6425.

Gangloff, S., Soustelle, C., and Fabre, F. (2000). Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet., 25, 192–194.

Gari, K., Décaillet, C., Stasiak, A. Z., Stasiak, A. and Constantinou, A. (2008). The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell, 29, 141–148.

Gasior, S. L., Wong, A. K., Kora, Y., Shinohara, A., and Bishop, D. K. (1998). Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev., 12(14), 2208-2221.

Gorbsky, G. J. (1994). Cell cycle progression and chromosome segregation in mammalian cells cultures in the presence of the topoisomerase II inhibitors ICRF-187 [(+)-1,2-bis(3,5- dioxopiperazinyl-1-yl)propane;ADR-529] and ICRF-159 (Razoxane). Cancer Res., 54 (4), 1042-8.

Greenwell, P. W., Kronmal, S. L., Porter, S. E., Gassenhuber, J., Obermaier, B., and Petes, T. D. (1995). TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell, 82, 823-829.

Haber, J. E. (2014). Genome Stability: DNA Repair and Recombinaition. New York, NY: Garland Science.

Haruki, H., Nishikawa, J., and Laemmli, U. K. (2008). The Anchor-Away Technique: Rapid, Conditional Establishment of Yeast Mutant Phenotypes. Molecular Cell, 31, 925-932.

Harvey, A. C., Jackson, S. P., and Downs, J. A. (2005). Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics, 170 (2), 543-553.

Hawley, R. S., and Arbel, T. (1993). Yeast genetics and the fall of the classical view of meiosis. Cell, 72 (3), 301–303.

Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M., and Shinohara, A. (2004). A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell, 119 (7), 927-940.

Hays, S. L., Firmenich, A. A., and Berg P. (1995). Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. U S A., 92 (15), 6925-9.

Hays, S. L., Firmenich, A. A., Massey, P., Banerjee, R., and Berg, P. (1998). Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol. Cell Biol., 18 (7), 4400-4406.

Hedge, V., and Klein, H. (2000). Requirement for the SRS2 DNA helicase gene in non- homologous end joining in yeast. Nucleic Acids Res. 28 (14), 2779-83.

Helliwell, S. B., Wagner, P., Kunz, J., Deuter-Reinhard, M., Henriquez, R., and Hall, M. N. (1994). TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell, 5 (1), 105-18.

Henderson, K. A. and Keeney, S. (2004). Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci, 101, 4519–4524.

Heyer, W. D., Li, X., Rolfsmeier, M., and Zhang, X. P. (2006). Rad54: the swiss army knife of homologous recombination? Nucleic Acids Res., 34 (15), 4115-4125.

Heyting C. (1996). Synaptonemal complexes: structure and function. Current opinion in cell biology, 8 (3), 389–396.

Hochwagen, A., Wrobel, G., Cartron, M., Demougin, P., Niederhauser-Wiederkehr, C., Boselli, M. G., Primig, M., and Amon, A. (2005). Novel Response to Microtubule Perturbation in Meiosis. Mol. Cell Biol., 25 (11) 4767-4781.

Hollingsworth, N. M., and Byers, B., (1989). HOP1: a yeast meiotic pairing gene. Genetics, 121, 445–462.

Hollingsworth, N. M. (2016). Mek1/Mre4 is a master regulator of meiotic recombination in budding yeast. Microb. Cell, 3 (3), 129-131.

Hong, E. J., and Roeder, G. S. (2002). A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. Genes & development, 16 (3), 363–376.

Hunter N. (2015). Meiotic Recombination: The Essence of Heredity. Cold Spring Harbor perspectives in biology, 7 (12), a016618.

Hunter, N., and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double- strand break to double-holliday junction transition of meiotic recombination. Cell, 106, 59–70.

Ira, G., Malkova, A., Liberi, G., Foiani, M., and Haber, J. E. (2003). Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell, 115(4), 401-411.

Islam, M. N., Paquet, N., Fox, D. et al. (2012). A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization. J. Biol. Chem., 287, 23808–18.

Jackson, S. P. (2002). Sensing and repairing DNA double-strand breaks. Carcinogenesis, 23, 687–696.

Karanam, K., Kafri, R., Loewer, A., and Lahav, G. (2012). Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Molecular cell, 47 (2), 320–329.

Kaur, H., De Muyt, A., and Lichten, M. (2015). Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol. Cell, 57, 583–594.

Keelagher, R. E., Cotton, V. E., Goldman, A. S. H., and Borts, R. H. (2011). Separable roles for Exonuclease I in meiotic DNA double-strand break repair. DNA Repair (Amst), 10, 126–37.

Keeney S. (2001). Mechanism and control of meiotic recombination initiation. Current topics in developmental biology, 52, 1–53.

Keeney, S., Giroux, C. N., and Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 88 (3), 375-84.

Keeney, S., Lange, J., and Mohibullah, N. (2014). Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu. Rev. Genet., 48, 187–214.

Kerrest, A., Anand, R. P., Sundararajan, R. et al. (2009). SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat. Struct. Mol. Biol., 16, 159– 67.

Khanna, K. K., and Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet., 27, 247–254.

Kim, K. P., B. M. Weiner, L. Zhang, A. Jordan, J. Dekker et al. (2010). Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell, 143, 924-937.

Klein, H.L. (1997). RDH54, a RAD54 homolog in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics, 147, 1533-1543.

Klein, H. L. (2001). Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics, 157 (2), 557-65.

Kobayashi, J. (2004). Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. J. Radiat. Res., 45(4), 473-478.

Kohl, K. P., and Sekelsky, J. (2013). Meiotic and mitotic recombination in meiosis. Genetics, 194, 327–334.

Kolesar, P., Altmannova, V., Silva, S. et al. (2016). Pro-recombination role of Srs2 protein requires SUMO (small ubiquitin-like modifier) but is independent of PCNA (proliferating cell nuclear antigen) Interaction. J. Biol. Chem., 291, 7594–607.

Krejci, L., Macris, M., Li, Y., Van Komen, S., Villemain, J., Ellenberger, T., Klein, H., and Sung, P. (2004). Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem., 279, 23193–23199.

Krejci, L., Van Komen, S., Li, Y., Villemain, J., Reddy, M. S., Klein, H., Ellenberger, T., and Sung, P. (2003). DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature, 423, 305– 309.

Krogh, B. O., and Symington, L. S. (2004). Recombination proteins in yeast. Annu. Rev. Genet., 38, 233-71.

Lambert, S. and Lopez, B. (2001). Role of RAD51 in sister-chromatid exchanges in mammalian cells. Oncogene, 20, 6627–6631.

Lambert, S., Mizuno, K., Blaisonneau, J. et al. (2010). Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol. Cell, 39, 346–59.

Lao, J. P., and Hunter, N. (2010). Trying to avoid your sister. PLoS Biol., 8, e1000519.

Lawrence, C. W., and Christensen, R. B. (1979). Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol., 139, 866– 876.

Le Breton, C., Dupaigne, P., Robert, T. et al. (2008). Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA. Nucleic Acids Res., 36, 4964– 74.

Lee, B. H., and Amon, A. (2003). Role of polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science, 300 (5618), 482-6.

Lee, S.K., Johnson, R.E., Yu, S.L., Prakash, L., and Prakash, S. (1999). Requirement of yeast

SGS1 and SRS2 genes for replication and transcription. Science, 286, 2339–2342.

Lee, K., and Lee, S. E. (2007). Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics, 176 (4), 2003–2014.

Leem, S-H., and Ogawa, H. (1992). The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae. Nucl. Acids Res., 20, 449–457.

Liu, J., Renault, L., Veaute, X., Fabre, F., Stahlberg, H., and Heyer, W. D. (2011). Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature, 479 (7372), 245-8.

Ljunger, E., Cnattingius, S., Lundin, C., and Annerén, G. (2005). Chromosomal anomalies in first trimester miscarriages. Acta Obstet. Gynaecol Scand, 84, 1103-1107

Lynn, A., Soucek, R., and Borner, G. V. (2007). ZMM proteins during meiosis: crossover artists at work. Chromosome Res., 15, 591–605.

Marechal, A., and Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol., 5(9), a012716.

Marini, V., and Krejci, L. (2012). Unwinding of synthetic replication and recombination substrates by Srs2. DNA repair, 11 (10), 789–798.

Martin, V., Chahwan, C., Gao, H., Blais, V., Wohlschlegel, J., Yates, J. R. III, McGowan, C. H., and Russell, P. (2006). Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. Embo J., 25, 2564– 2574.

Masson, J. Y., Tarsounas, M. C., Stasiak, A. Z., Stasiak, A., Shah, R., McIlwraith, M. J., Benson, F. E., and West, S. C. (2001). Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes & development, 15 (24), 3296–3307.

Matos, J., and West, S. C. (2014). Holliday junction resolution: Regulation in space and time. DNA Repair (Amst), 19, 176–181.

McKee, A. H., and Kleckner, N. (1997). Mutations in Saccharomyces cerevisiae that block meiotic prophase chromosome metabolism and confer cell cycle arrest at pachytene identify two new meiosis-specific genes SAE1 and SAE3. Genetics, 146 (3), 817–834.

McMahill, M. S., Sham, C. W., and Bishop, D. K. (2007). Synthesis-dependent strand annealing in meiosis. PLoS Biol., 5, 2589-2601.

McVey, M., Kaeberlein, M., Tissenbaum, H. A., and Guarente, L. (2001). The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics, 157(4), 1531-1542.

Milne, G. T., Ho, T., and Weaver, D. T. (1995). Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics, 139, 1189–1199.

Miura, T., Shibata, T., and Kusano, K. (2013). Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity. P. Natl. Acad. Sci. U.S.A., 110, 16067–72.

Moldovan, G. L., Dejsuphong, D., Petalcorin, M. I. R., Hoffmann, K., Takeda, S., Boulton, S. J., and D’Andrea, A. D. (2012). Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell, 45 (1), 75-86.

Moldovan, G. L., Madhavan, M. V., Mirchandani, K. D., McCaffrey, R. M., Vinciguerra, P., and D'Andrea, A. D. (2010). DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol Cell Biol., 30, 1088–1096.

Morawska, M., and Ulrich, H. D. (2013). An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast, 30(9), 341-351.

Moreau, S., Ferguson, J. R., and Symington, L. S. (1999). The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Molecular and cellular biology, 19 (1), 556–566.

Moynahan, M. E., Pierce, A. J., and Jasin, M. (2001). BRCA2 is required for homology- directed repair of chromosomal breaks. Mol. Cell, 7 (2), 263-72.

Neale, M. J., Pan, J., and Keeney, S. (2005). Endonucleolytic processing of covalent protein- linked DNA double-strand breaks. Nature, 436 (7053), 1053–1057.

New, J. H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S. C. (1998). Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature, 391, 407- 410.

Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and Kanemaki, M. (2009). An auxin- based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods, 6(12), 917-922.

Niu, H., Li, X., Job, E., Park, C., Moazed, D., Gygi, S. P., et al., (2007). Mek1 kinase is regulated to suppress doublestrand break repair between sister chromatids during budding yeast meiosis. Mol. Cell Biol., 27(15), 5456–67.

Niu, H., Wan, L., Baumgartner, B., Schaefer, D., Loidl, J., et al., (2005). Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol. Biol. Cell, 16, 5804–5818.

Niu, H., Wan, L., Busygina, V., Kwon, Y., Allen, J. A., et al., (2009). Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell, 36, 393–404.

O’Connor, K. W., et al. (2013). PARI overexpression promotes genomic instability and pancreatic tumorigenesis. Cancer Res., 73, 2529–2539.

Oh, S. D., Lao, J. P., Hwang, P. Y., Taylor, A. F., Smith, G. R., et al., (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell, 130, 259–272.

Okaz, E., Argüello-Miranda, O., Bogdanova, A., Vinod, P. K., Lipp, J. J., Markova, Z., Zagoriy, L., Novak, B., and Zachariae, W. (2012). Meiotic prophase requires proteolysis of Ama1 M phase regulators mediated by the meiosis-specific APC/C. Cell, 151 (3), 603-618.

Ooi, S. L., Shoemaker, D. D., and Boeke, J. D. (2003). DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet., 35, 277–86.

Padmore, R., Cao, L., and Kleckner, N. (1991). Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell, 66 (6), 1239–1256.

Page, S. L., and Hawley, R. S. (2004). The genetics and molecular biology of the synaptonemal complex. Annual review of cell and developmental biology, 20, 525–558.

Paliwal, S., Radhkrishnan, K., Sturzenegger, A., Burdova, K., and Janscak, P. (2014). Huamn RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res., 42 (4), 2380-2390.

Palladino, F., and Klein, H. L. (1992). Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics, 132 (1), 23-37.

Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H. G., et al., (2011). A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell, 144, 719–731.

Papouli, E., Chen, S., Davies, A. A. et al. (2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell, 19, 123–33.

Peoples, T. L., Dean, E., Gonzalez, O., Lambourne, L., and Burgess, S. M. (2002). Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts. Genes Dev, 16, 1682–1695.

Petronczki, M., Matos, J., Mori, S., Gregan, J., Bogdanova, A., Schwickart, M., Mechtler, K., Shirahige, K., Zachariae, W., and Nasmyth, K. (2006). Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell, 126 (6), 1049–1064.

Petronczki, M., Siomos, M. F. and Nasmyth, K. (2003). Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell, 112, 423– 440.

Pfander, B., Moldovan, G. L., Sacher, M. et al. (2005). SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature, 436, 428–33.

Picard, D. (1994). Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol., 5(5), 511-515.

Prieler, S., Penkner, A., Borde, V., and Klein, F. (2005). The control of Spo11's interaction with meiotic recombination hotspots. Genes & development, 19 (2), 255–269.

Prinz, S., Amon, A., and Klein, F. (1997). Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics, 146 (3), 781–795.

Rattray, A. J., and Symington, L. S. (1995). Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics, 139 (1), 45-56.

Robert, T., Dervins, D., Fabre, F. et al. (2006). Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J., 25, 2837–46.

Rockmill, B., and Roeder, G. S. (1990). Meiosis in asynaptic yeast. Genetics, 126, 563–574.

Rockmill, B., and Roeder, G. S. (1991). A meiosis-specific protein kinase homologue required for chromosome synapsis and recombination. Genes Dev., 5, 2392–2404.

Roeder, G. S. (1997). Meiotic chromosomes: it takes two to tango. Genes Dev., 11 (20), 2600-21.

Roeder, G. S., and Bailis, J. M. (2000). The pachytene checkpoint. Trends in genetics : TIG, 16 (9), 395–403.

Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998). DNA double- stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 273(10), 5858-5868.

Rong, L., Palladino, F., Aguilera, A., and Klein, H. L. (1991). The hyper-gene conversion hpr5- 1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics, 127 (1), 75-85.

Saponaro, M., Callahan, D., Zheng, X. et al. (2010). Cdk1 targets Srs2 to complete synthesis- dependent strand annealing and to promote recombinational repair. PLoS Genet., 6, e1000858.

Sasanuma, H., Furihata, Y., Shinohara, M., and Shinohara, A. (2013b). Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase. Genetics, 194 (4), 859-872.

Sasanuma, H., Sakurai, H. S. M., Furihata, Y., et al., (2019). Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma, 128(3), 453-471.

Sasanuma, H., Tawaramoto, M. S., Lao, J. P., Hosaka, H., Sanda, E., Mamoru, S., Yamashita, E., Hunter, N., Shinohara, M., Nakagawa, A., and Shinohara, A. (2013a). A new protein complex promoting the assembly of Rad51 filaments. Nature Comm., 4 (1676).

Schiestl, R. H., Gietz, R. D., Hastings, P. J., and Wintersberger, U. (1990). Interchromosomal and intrachromosomal recombination in rad 18 mutants of Saccharomyces cerevisiae. Molecular & general genetics : MGG, 222 (1), 25–32.

Schild, D. (1995). Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics, 140, 115–127.

Schwacha, A., and Kleckner, N., (1994). Identification of joint molecules that form frequently between homologs but rarely between sister chromatids. Cell, 76, 51–63.

Schwacha, A., and Kleckner, N. (1995). Identification of double Holliday junctions as intermediates in meiotic recombination. Cell, 83, 783–791.

Schwendener, S., Raynard, S., Paliwal, S., Cheng, A., Kanagaraj, R., Shevelev, I., Stark, J. M., Sung, P., and Janscak, P. (2010). Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. The Journal of biological chemistry, 285 (21), 15739–15745.

Scully, R., Panday, A., Elango, R., and Willis, N. A. (2019). DNA double-strand break repair- pathway choice in somatic mammalian cells. Nature reviews, 20, 698-714.

Seong, C., Colavito, S., Kwon, Y. et al. (2009). Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J. Biol. Chem., 284, 24363–71.

Shinohara, M., Shita-Yamaguchi, E., Buerstedde, J. M., Shinagawa, H., Ogawa, H., and Shinohara, A. (1997). Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics, 147 (4), 1545-56.

Shinohara, A., Ogawa, H., and Ogawa, T. (1992). Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell, 69 (3), 457-70.

Shinohara, A., and Ogawa, T. (1998). Stimulation of Rad52 of yeast Rad51-mediated recombination. Nature, 391, 404-407.

Simandlova, J., Zagelbaum, J., Payne, M. J., Chu, W. K., Shevelev, I., Handa, K., Chatterjee, S., Reid, D. A., Liu, Y., Janscak, P., Rothenberg, E., and Hickson, I. D. (2013). FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J. Biol. Chem., 288 (47), 34168-34180.

Smirnova, M., and Klein, H. L. (2003). Role of the error-free damage bypass postreplica- tion repair pathway in the maintenance of genomic stability. Mutat. Res., 532, (2003) 117–135.

Smith, K. N., and Nicolas, A. (1998). Recombination at work for meiosis. Curr. Opin. Genet. Dev., 8 (2), 200-11.

Sourirajan, A., and Lichten, M. (2008). Polo-like kinase Cdc5 drives exit from pachytene during buding yeast meiosis. Genes Dev., 22 (19), 2627-32.

Stafa, A., Donnianni, R. A., Timashev, L. A., Lam, A. F., and Symington, L. S. (2014). Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics, 196, 1017–1028.

Subramanian, V. V., and Hochwagen, A. (2014). The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harbor Perspect. Biol., 6(10) :a016675.

Subramanian V. V., MacQueen A. J., Vader G., Shinohara M., Sanchez A., Borde V., Shinohara, A., and Hochwagen, A. (2016). Chromosome Synapsis Alleviates Mek1- Dependent Suppression of Meiotic DNA Repair. PLoS. Biol. 14 (2).

Sung, P. (1997b) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev., 11 (9), 1111-21.

Sung, P. (1997a). Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem., 272 (45), 28194-7.

Suwaki, N., Klarea, K., and Tarsounas, M. (2011). RAD51 paralogs: Roles in DNA damage signaling, recombinational repair and tumorigenesis. Seminars in Cell & Developmental Biology, 22, 898-905.

Sym, M., Engebrecht, J., and Roeder, G. S. (1993). ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell, 72, 365–378.

Tang, S., Wu, M. K., Zhang, R., and Hunter, N., (2015). Pervasive and essential roles of the Top3- Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol. Cell, 57, 607–621.

Tessé, S., Storlazzi, A., Kleckner, N., Gargano, S., and Zickler, D. (2003). Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci, 100, 12865–12870.

Tsubouchi, H., and Ogawa, H. (1998). A novel mre11 mutation impairs processing of double- strand breaks of DNA during both mitosis and meiosis. Molecular and cellular biology, 18 (1), 260–268.

Ulrich, H. D. (2001). The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res., 29, 3487–3494.

Urulangodi, M., Sebesta, M., Menolfi, D. et al. (2015). Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Gene Dev., 29, 2067–80.

Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H., and Ogawa, T. (1998). Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell, 95 (5), 705–716.

van Gent, D. C., Hoeijmakers, J. H., and Kanaar, R. (2001). Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet., 2, 196–206.

Vaze, M. B., Pellicioli, A., Lee, S. E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M., and Haber,

J. E. (2002). Recovery from checkpoint-mediated arrest after repair of a double- strand break requires Srs2 helicase. Mol. Cell, 10 (2), 373-85.

Veaute, X., Jeusset, J., Soustelle, C., Kowalczykowski, S. C., Le Cam, E., and Fabre, F. (2003). The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature, 423, 309 –312.

Wanat, J., Gemici, Z., and Alani, E. (2004). Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics, 168, 1805–16.

Wang, S.W., Goodwin, A., Hickson, I.D., and Norbury, C.J. (2001). Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage. Nucleic Acids Res., 29, 2963–2972.

Ward, J. D., Muzzini, D. M., Petalcorin, M. I., Martinez-Perez, E., Martin, J. S., Plevani, P., Cassata, G., Marini, F., and Boulton, S. J. (2010). Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair. Mol. Cell, 37, 259–272.

Watts, F. Z. (2006). Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA Repair (Amst), 5, 399–403.

Weinert, T. A., Kiser, G. L., and Hartwell, L. H. (1994). Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev., 8, 652-665.

Wooster, R., Neuhausen, S. L., Mangion, J., Quirk, Y., Ford, D., Collins, N., Nguyen, K., Seal, S., Tran, T., Averill, D. et al., (1994). Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science, 265 (5181), 2088-2090.

Wu, L., and Hickson, I. D. (2003). The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature, 426(6968), 870-874.

Wu, H. Y., Ho, H. C., and Burgess, S. M. (2010). Mek1 kinase governs outcomes of meiotic recombination and the checkpoint response. Curr. Bio., 20, 1707–1716.

Xu, L., Ajimura, M., Padmore, R., Klein, C., Kleckner, N. (1995). NDT80, a meiosis- specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell Biol., 15 (12), 6572-6581.

Xu, L., Weiner, B. M., and Kleckner, N. (1997). Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev., 11, 106-118.

Youds, J. L., Mets, D. G., Mcllwraith, M. J., Martin, J. S., Ward, J. D., O’Neil, N. J., Rose, A. M., West, S. C., Meyer, B. J., Boulton, S. J. (2010). RTEL-1 enforces meiotic crossover interference and homeostasis. Science, 327, 1254-1258.

Zakharyevich, K., Ma, Y., Tang, S., Hwang, P. Y-H., Boiteux, S., and Hunter, N. (2010). Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell, 40, 1001–15.

Zakharyevich, K., Tang, S., Ma, Y., and Hunter, N. (2012). Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell, 149, 334–47.

Zhao, W., Vaithiyalingam, S., San Filippo, J., Maranon, D. G., Jimenez-Sainz, J., Fontenay, G. V., Kwon, Y., Leung, S. G., Lu, L., Jensen, R. B., Chazin, W. J., Wiese, C., and Sung, P. (2015). Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Molecular cell, 59 (2), 176–187.

Zickler, D., and Kleckner, N. (1999). Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet., 33, 603-754.

Zickler, D., and Kleckner, N. (2015). Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harbor perspectives in biology, 7 (6), a016626.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る