リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynamic Analysis of the Median Nerve in Carpal Tunnel Syndrome from Ultrasound Images Using the YOLOv5 Object Detection Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynamic Analysis of the Median Nerve in Carpal Tunnel Syndrome from Ultrasound Images Using the YOLOv5 Object Detection Model

Tanaka, Shuya Inui, Atsuyuki Mifune, Yutaka Nishimoto, Hanako Shinohara, Issei Furukawa, Takahiro Kato, Tatsuo Kusunose, Masaya Ehara, Yutaka Takigami, Shunsaku Kuroda, Ryosuke 神戸大学

2023.12

概要

Carpal tunnel syndrome (CTS) is caused by subsynovial connective tissue fibrosis, resulting in median nerve (MN) mobility. The standard evaluation method is the measurement of the MN cross-sectional area using static images, and dynamic images are not widely used. In recent years, remarkable progress has been made in the field of deep learning (DL) in medical image processing. The aim of the present study was to evaluate MN dynamics in CTS hands using the YOLOv5 model, which is one of the object detection models of DL. We included 20 normal hands (control group) and 20 CTS hands (CTS group). We obtained ultrasonographic short-axis images of the carpal tunnel and the MN and recorded MN motion during finger flexion–extension, and evaluated MN displacement and velocity. The YOLOv5 model showed a score of 0.953 for precision and 0.956 for recall. The radial–ulnar displacement of the MN was 3.56 mm in the control group and 2.04 mm in the CTS group, and the velocity of the MN was 4.22 mm/s in the control group and 3.14 mm/s in the CTS group. The scores were significantly reduced in the CTS group. This study demonstrates the potential of DL-based dynamic MN analysis as a powerful diagnostic tool for CTS.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Alfonso, C.; Jann, S.; Massa, R.; Torreggiani, A. Diagnosis treatment and follow-up of the carpal tunnel syndrome: A review.

Neurol. Sci. 2010, 31, 243–252. [CrossRef] [PubMed]

Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosen, I. Prevalence of carpal tunnel syndrome in a general

population. JAMA 1999, 282, 153–158. [CrossRef] [PubMed]

Festen-Schrier, V.J.M.M.; Amadio, P.C. The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel

syndrome. J. Electromyogr. Kinesiol. 2018, 38, 232–239. [CrossRef]

Robben, E.; Dever, J.; De Groef, A.; Degreef, I.; Peers, K. Subsynovial connective tissue thickness in carpal tunnel syndrome: A

systematic review. Clin. Biomech. 2020, 75, 105002. [CrossRef] [PubMed]

Ettema, A.M.; Amadio, P.C.; Zhao, C.; Wold, L.E.; O’Byrne, M.M.; Moran, S.L.; An, K.N. Changes in the functional structure of

the tenosynovium in idiopathic carpal tunnel syndrome: A scanning electron microscope study. Plast. Reconstr. Surg. 2006, 118,

1413–1422. [CrossRef] [PubMed]

Ettema, A.M.; Amadio, P.C.; Zhao, C.; Wold, L.E.; An, K.N. A histological and immunohistochemical study of the subsynovial

connective tissue in idiopathic carpal tunnel syndrome. J. Bone Jt. Surg. Am. 2004, 86, 1458–1466. [CrossRef]

Kerr, C.D.; Sybert, D.R.; Albarracin, N.S. An analysis of the flexor synovium in idiopathic carpal tunnel syndrome: Report of 625

cases. J. Hand Surg. Am. 1992, 17, 1028–1030. [CrossRef] [PubMed]

Oh, J.; Zhao, C.; Zobitz, M.E.; Wold, L.E.; An, K.N.; Amadio, P.C. Morphological changes of collagen fibrils in the subsynovial

connective tissue in carpal tunnel syndrome. J. Bone Jt. Surg. Am. 2006, 88, 824–831. [CrossRef]

Chen, Y.T.; Williams, L.; Zak, M.J.; Fredericson, M. Review of Ultrasonography in the Diagnosis of Carpal Tunnel Syndrome and a

Proposed Scanning Protocol. J. Ultrasound Med. 2016, 35, 2311–2324. [CrossRef]

Visser, L.H.; Smidt, M.H.; Lee, M.L. High-resolution sonography versus EMG in the diagnosis of carpal tunnel syndrome.

J. Neurol. Neurosurg. Psychiatry 2008, 79, 63–67. [CrossRef]

Buchberger, W.; Judmaier, W.; Birbamer, G.; Lener, M.; Schmidauer, C. Carpal tunnel syndrome: Diagnosis with high-resolution

sonography. Am. J. Roentgenol. 1992, 159, 793–798. [CrossRef] [PubMed]

Kluge, S.; Langer, M.; Schelle, T. Sonographic Diagnosis of Carpal Tunnel Syndrome. Hand Clin. 2022, 38, 35–53. [CrossRef]

[PubMed]

Ellis, R.; Blyth, R.; Arnold, N.; Miner-Williams, W. Is there a relationship between impaired median nerve excursion and carpal

tunnel syndrome? A systematic review. J. Hand Ther. 2017, 30, 3–12. [CrossRef] [PubMed]

Park, G.Y.; Kwon, D.R.; Seok, J.I.; Park, D.S.; Cho, H.K. Usefulness of ultrasound assessment of median nerve mobility in carpal

tunnel syndrome. Acta Radiol. 2018, 59, 1494–1499. [CrossRef] [PubMed]

Erel, E.; Dilley, A.; Greening, J.; Morris, V.; Cohen, B.; Lynn, B. Longitudinal sliding of the median nerve in patients with carpal

tunnel syndrome. J. Hand Surg. Br. 2003, 28, 439–443. [CrossRef] [PubMed]

Hough, A.D.; Moore, A.P.; Jones, M.P. Reduced longitudinal excursion of the median nerve in carpal tunnel syndrome. Arch.

Phys. Med. Rehabil. 2007, 88, 569–576. [CrossRef] [PubMed]

Filius, A.; Scheltens, M.; Bosch, H.G.; van Doorn, P.A.; Stam, H.J.; Hovius, S.E.; Amadio, P.C.; Selles, R.W. Multidimensional

ultrasound imaging of the wrist: Changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome.

J. Orthop. Res. 2015, 33, 1332–1340. [CrossRef]

Filius, A.; Thoreson, A.R.; Wang, Y.; Passe, S.M.; Zhao, C.; An, K.N.; Amadio, P.C. The effect of tendon excursion velocity on

longitudinal median nerve displacement: Differences between carpal tunnel syndrome patients and controls. J. Orthop. Res. 2015,

33, 483–487. [CrossRef]

Liu, C.T.; Liu, D.H.; Chen, C.J.; Wang, Y.W.; Wu, P.S.; Horng, Y.S. Effects of wrist extension on median nerve and flexor tendon

excursions in patients with carpal tunnel syndrome: A case control study. BMC Musculoskelet. Disord. 2021, 22, 477. [CrossRef]

Wang, Y.; Filius, A.; Zhao, C.; Passe, S.M.; Thoreson, A.R.; An, K.N.; Amadio, P.C. Altered median nerve deformation and

transverse displacement during wrist movement in patients with carpal tunnel syndrome. Acad. Radiol. 2014, 21, 472–480.

[CrossRef]

Van Doesburg, M.H.; Henderson, J.; van der Molen, A.B.M.; An, K.N.; Amadio, P.C. Transverse plane tendon and median nerve

motion in the carpal tunnel: Ultrasound comparison of carpal tunnel syndrome patients and healthy volunteers. PLoS ONE 2012,

7, e37081. [CrossRef] [PubMed]

Nanno, M.; Sawaizumi, T.; Kodera, N.; Tomori, Y.; Takai, S. Transverse Movement of the Median Nerve in the Carpal Tunnel

during Wrist and Finger Motion in Patients with Carpal Tunnel Syndrome. Tohoku J. Exp. Med. 2015, 236, 233–240. [CrossRef]

[PubMed]

Kang, H.J.; Yoon, J.S. Effect of finger motion on transverse median nerve movement in the carpal tunnel. Muscle Nerve 2016, 54,

738–742. [CrossRef] [PubMed]

Toge, Y.; Nishimura, Y.; Basford, J.R.; Nogawa, T.; Yamanaka, M.; Nakamura, T.; Yoshida, M.; Nagano, A.; Tajima, F. Comparison

of the effects of flexion and extension of the thumb and fingers on the position and cross-sectional area of the median nerve. PLoS

ONE 2013, 8, e83565. [CrossRef] [PubMed]

Yoshii, Y.; Ishii, T.; Tung, W.-L.; Sakai, S.; Amadio, P.C. Median nerve deformation and displacement in the carpal tunnel during

finger motion. J. Orthop. Res. 2013, 31, 1876–1880. [CrossRef] [PubMed]

Lalehzarian, S.P.; Gowd, A.K.; Liu, J.N. Machine learning in orthopaedic surgery. World J. Orthop. 2021, 12, 685–699. [CrossRef]

Appl. Sci. 2023, 13, 13256

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

10 of 10

Wu, C.H.; Syu, W.T.; Lin, M.T.; Yeh, C.L.; Boudier-Revéret, M.; Hsiao, M.Y.; Kuo, P.L. Automated Segmentation of Median Nerve

in Dynamic Sonography Using Deep Learning: Evaluation of Model Performance. Diagnostics 2021, 11, 1893. [CrossRef]

Wang, Y.W.; Chang, R.F.; Horng, Y.S.; Chen, C.J. MNT-DeepSL: Median nerve tracking from carpal tunnel ultrasound images with

deep similarity learning and analysis on continuous wrist motions. Comput. Med. Imaging Graph. 2020, 80, 101687. [CrossRef]

Cosmo, M.D.; Chiara Fiorentino, M.; Villani, F.P.; Sartini, G.; Smerilli, G.; Filippucci, E.; Frontoni, E.; Moccia, S. Learning-based

median nerve segmentation from ultrasound images for carpal tunnel syndrome evaluation. In Proceedings of the 2021 43rd

Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Conference, 1–5

November 2021; pp. 3025–3028.

Smerilli, G.; Cipolletta, E.; Sartini, G.; Moscioni, E.; Di Cosmo, M.; Fiorentino, M.C.; Moccia, S.; Frontoni, E.; Grassi, W.; Filippucci,

E. Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound

images acquired at carpal tunnel level. Arthritis Res. Ther. 2022, 24, 38. [CrossRef]

Huang, Y.T.; Chen, C.J.; Wang, Y.W.; Peng, P.L.; Luo, Y.T.; Horng, Y.S. Ultrasonographical Evaluation of the Median Nerve

Mobility in Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2349. [CrossRef]

YOLOv5 in PyTorch > ONNX > CoreML > TFLite—GitHub. Available online: https://github.com/ultralytics/yolov5 (accessed

on 17 January 2022).

Aly, G.H.; Marey, M.; El-Sayed, S.A.; Tolba, M.F. YOLO Based Breast Masses Detection and Classification in Full-Field Digital

Mammograms. Comput. Methods Programs Biomed. 2021, 200, 105823. [CrossRef]

Li, J.; Li, S.; Li, X.; Miao, S.; Dong, C.; Gao, C.; Liu, X.; Hao, D.; Xu, W.; Huang, M.; et al. Primary bone tumor detection and

classification in full-field bone radiographs via YOLO deep learning model. Eur. Radiol. 2023, 33, 4237–4248. [CrossRef] [PubMed]

Shinohara, I.; Inui, A.; Mifune, Y.; Nishimoto, H.; Yamaura, K.; Mukohara, S.; Yoshikawa, T.; Kato, T.; Furukawa, T.; Hoshino, Y.;

et al. Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high accuracy. Ultrasound Med. Biol.

2022, 48, 2052–2059. [CrossRef]

Amodeo, I.; De Nunzio, G.; Raffaeli, G.; Borzani, I.; Griggio, A.; Conte, L.; Macchini, F.; Condò, V.; Persico, N.; Fabietti, I.; et al. A

maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia

(CLANNISH): Protocol for a retrospective study. PLoS ONE 2021, 16, e0259724. [CrossRef] [PubMed]

Taormina, V.; Raso, G.; Gentile, V.; Abbene, L.; Buttacavoli, A.; Bonsignore, G.; Valenti, C.; Messina, P.; Scardina, G.A.; Cascio, D.

Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors 2023, 23, 7674. [CrossRef]

Nakamichi, K.; Tachibana, S. Restricted Motion of the Median Nerve in Carpal Tunnel Syndrome. J. Hand Surg. 1995, 20, 460–464.

[CrossRef] [PubMed]

Fan, C.; Fede, C.; Pirri, C.; Guidolin, D.; Biz, C.; Macchi, V.; De Caro, R.; Stecco, C. Quantitative Evaluation of the Echo Intensity of

Paraneural Area and Myofascial Structure around Median Nerve in Carpal Tunnel Syndrome. Diagnostics 2020, 10, 914. [CrossRef]

[PubMed]

Kuo, T.-T.; Lee, M.-R.; Liao, Y.-Y.; Chen, J.-P.; Hsu, Y.-W.; Yeh, C.-K. Assessment of Median Nerve Mobility by Ultrasound Dynamic

Imaging for Diagnosing Carpal Tunnel Syndrome. PLoS ONE 2016, 11, e0147051. [CrossRef]

Hara, Y.; Tajiri, Y.; Kawano, K.; Hoshikawa, S. Evaluation of Restricted Motion Area of the Median Nerve in Patients with Carpal

Tunnel Syndrome: A New Measurement Method Using an Ultrasonographic Video Image. J. Hand Surg. 2021, 26, 635–643.

[CrossRef]

Wang, J.C.; Shu, Y.C.; Lin, C.Y.; Wu, W.T.; Chen, L.R.; Lo, Y.C.; Chiu, H.C.; Özçakar, L.; Chang, K.V. Application of deep learning

algorithms in automatic sonographic localization and segmentation of the median nerve: A systematic review and meta-analysis.

Artif. Intell. Med. 2023, 137, 102496. [CrossRef]

Hafiane, A.; Vieyres, P.; Delbos, A. Deep Learning with Spatiotemporal Consistency for Nerve Segmentation in Ultrasound

Images. arXiv 2017, arXiv:1706.05870.

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

Horng, M.H.; Yang, C.W.; Sun, Y.N.; Yang, T.H. DeepNerve: A New Convolutional Neural Network for the Localization and

Segmentation of the Median Nerve in Ultrasound Image Sequences. Ultrasound Med. Biol. 2020, 46, 2439–2452. [CrossRef]

[PubMed]

Shinohara, I.; Yoshikawa, T.; Inui, A.; Mifune, Y.; Nishimoto, H.; Mukohara, S.; Kato, T.; Furukawa, T.; Tanaka, S.; Kusunose, M.;

et al. Degree of Accuracy with Which Deep Learning for Ultrasound Images Identifies Osteochondritis Dissecans of the Humeral

Capitellum. Am. J. Sports Med. 2023, 51, 358–366. [CrossRef] [PubMed]

Inui, A.; Mifune, Y.; Nishimoto, H.; Mukohara, S.; Fukuda, S.; Kato, T.; Furukawa, T.; Tanaka, S.; Kusunose, M.; Takigami, S.; et al.

Detection of Elbow OCD in the Ultrasound Image by Artificial Intelligence Using YOLOv8. Appl. Sci. 2023, 13, 7623. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る