リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Asymptotic representation thoery of quantum groups and related topics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Asymptotic representation thoery of quantum groups and related topics

佐藤, 僚亮 名古屋大学

2022.05.19

概要

漸近的表現論(asymptotic representation theory)とは本来,コンパクト群の帰納極限のユニタリ表現論である.本論文ではそのコンパクト量子群の帰納極限への拡張について議論する.特にコンパクト群の帰納極限の指標に確率論的手法が有用であることが知られており,それが量子群でも同様であることを示す.それにはそもそもコンパクト量子群の帰納極限やそのユニタリ表現,指標の定式化も含む.さらに本論文では,特に BCD 型のコンパクト量子群の帰納極限の指標について解析し,BC 型の場合にその端点を完全に決定する.これは提出者の修士論文の続きにあたる.また一般にコンパクト量子群の帰納極限の端点指標から,GNS 構成法により von Neumann 代数という Hilbert 空間上の有界線形作用素のなす代数が得られ,それが von Neumann 因子と呼ばれるものになる.von Neumann 因子について Murray--von Neumann, Connes などによりその分類がよく知られており,本論文は A 型コンパクト量子群の帰納極限の端点指標から得られる von Neumann 因子の分類を与える.特にそれから元の A 型コンパクト群であるユニタリ群とその量子群との帰納極限の表現論の違いについて議論する.また漸近的表現論は現在integrable probability theory と呼ばれる統計力学の一分野の一つの源泉で,表現論に起因する確率分布や確率過程などの研究が行われている.本論文でも量子群の指標から生成される Markov 過程について議論する.特に ABC 型のコンパクト量子群の帰納極限の具体的な指標を与え,それから生成される Markov 過程の生成作用素を記述する.またABC 型のコンパクト量子群の帰納極限の指標から Gelfand--Tsetlin パターンと呼ばれる対象の上の Markov 過程を構成する.Gelfand--Tsetlin パターンは integrable probability theory で重要な対象で,本論文はその上の Markov 過程の表現論的解釈を与える.

参考文献

[1] P. Biane, Quantum random walk on the dual of SU (n), Probab. Th. Rel. Fields 89 (1991) 117–129.

[2] B. Blackadar, Operator Algebras : Theory of C∗-Algebras and von Neumann Algebras, Encyclopedia of Math- ematical Sciences 122, Springer-Verlag Berlin Heidelberg, 2006.

[3] A. Borodin, I. Corwin, Macdonald processes, Probab. Theory and Related Fields 158 (2014), 225–400.

[4] A. Borodin, P. L. Ferrari, Anisotropic growth of random surfaces in 2+1 dimensions, Commun. Math. Phys. 325 (2014), 603–684.

[5] A. Borodin, V. Gorin, Markov processes of infinitely many nonintersecting random walk, Probab. Theory Relat. Fields. 155 (2013), 935–997.

[6] A. Borodin, G. Olshanski, Markov processes o the path space of the Gelfand–Tsetlin graph and on its boundary, J. Funct. Anal. 263 (2012), 248–303.

[7] A. Borodin, L. Petrov, Integrable probability: From representation theory to Macdonald processes, Probab. Surv. 11, 1–58.

[8] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1. Equilibrium states. Models in quantum statistical mechanics. Second edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, 1997.

[9] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium states. Models in quantum statistical mechanics. Second edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, 1997.

[10] A. Borodin, G. Olshanski, Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, Ann. of Math. (2) 161 (2005), no. 3, 1319–1422

[11] A. Borodin, G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge University Press, 2016.

[12] R. P. Boyer, Infinite traces of AF-algebras and characters of U (∞), J. Operator Theory 9 (1983), 205–236.

[13] R. P. Boyer, Characters and factor representations of the infinite dimensional classical groups, J. Operator Theory 28(1992), no. 2, pp. 281–307.

[14] G. Brown, A. H. Dooley, J. Lake, On the Krieger–Araki–Woods ratio set, Tˆohoku Math. J. 47 (1995), 1–13.

[15] F. Cipriani, U. Franz, A. Kula, Symmetries of L´evy processes on compact quantum groups, their Markov semigroups and potential theory, Journal of Funct. Anal., 266 (2014), no. 5, 2789–2844.

[16] C. Cuenca, Asymptotic Formulas for Macdonald Polynomials and the Boundary of the (q, t)-Gelfand–Tsetlin graph, SIGMA 14 (2018), No. 001, 66pp.

[17] C. Cuenca, V. Gorin, q-Deformed character theory for infinite-dimensional symplectic and orthogonal groups, Selecta Mathematica 26 (2020), pp. 1–55.

[18] V. Chari, A. Presseley, A Guide to Quantum Groups, Cambridge University Press, 1994.

[19] J. Dixmier, C∗-algebras, North-Holland Mathematical Library, North-Holland Publishing Co. Amsterdam-New York-Oxford, 1997.

[20] R. Durrett, Probability: theory and examples, Fourth edition, Cambridge Series in Statistical and Probabilistic Mathematics, 31. Cambridge University Press, 2010.

[21] M. Enock, J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag Berlin Hei- delberg, 1992.

[22] T. Enomoto, M. Izumi, Indecomposable characters of infinite dimensional groups associated with operator algebras, J. Math. Soc. Japan 68 (2016), no. 3, 1231–1270

[23] S. N. Ethier, T. G. Kurtz, Markov processes – Characterization and Convergence, Wiley–Interscience, New York, 1986.

[24] U. Franz, L´evy processes on quantum group and dual groups, In: Quantum independent increment processes II., Springer, Berlin, Heidelberg (2006), 161–257.

[25] W. Fulton, J. Harris, Representation Theory: A First Course, Vol. 129. Springer Science & Business Media, 2013.

[26] V. Gorin, The q-Gelfand–Tsetlin graph, Gibbs measures and q-Toeplitz matrices, Adv. Math. 229 (2012), 201– 266.

[27] T. Hirai, E. Hirai, Positive definite class functions on a topological group and characters of factor representations, J. Math. Kyoto Univ. 45 (2005), no. 2, 355–376

[28] T. Hirai, H. Shimomura, N. Tatsuma, E. Hirai, Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ. 41 (2001), 475–505.

[29] M. Izumi, Non-coummutative Poisson boundaries and compact quantum group actions, Adv. in Math. 169(2002), no.1, 1–57.

[30] M. Izumi, S. Neshveyev, L. Tuset, Poisson boundary of the dual of SUq (n), Commun. Math. Phys. 262 (2006), 505–531.

[31] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Trans. Math. Mono. 219, Amer. Math. Soc., 2003.

[32] A. A. Kirillov, Introduction to the theory of representations and noncommutative harmonic analysis, Represen- tation Theory and Noncommutative Harmonic Analysis I, Springer, Berlin, Heidelberg, 1994.

[33] A. Klimyk, K. Schmu¨dgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.

[34] Z. Kosloff, On a type III1 type Bernoulli shift, Ergod. Th. & Dynam. Sys. 31 (2011), no. 6, 1727–1747

[35] J. Kuan, Two construction of Markov chains on the dual of U (n), Journal of Th. Prob. 31 (2018), 1411–1428.

[36] J. Kustermans, S. Vaes, Locally compact quantum groups, Ann. Sci. E´cole Norm. Sup., (4)33(6) (2000), 837– 934.

[37] T. Masuda, Y. Nakagami, A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci. 30(1994), no. 5, 799–850

[38] S. Neshveyev, L. Tuset, Compact Quantum Groups and Their Representation Categories, Soc. Math. France., 2013.

[39] M. Noumi, H. Yamada, K. Mimachi, Finite dimensional representations of the quantum group GLq (n; C) and the zonal spherical functions on Uq (n − 1)\Uq (n), Japan J. Math. 19 (1993), no. 1, 31–80

[40] A. Okounkov, G. Olshanski, Limits of BC-type orthogonal polynomials as the number of variables goes to infinity, Contemporary Mathathematics 417 (2006), 281–318.

[41] G. Olshanski, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe, In Rep- resentation of Lie groups and related topics (A. M. Vershik and D. P. Zhelobenko, eds.), Adv. Stud. Comtemp. Math. 7, Gordon and Breach, New York, 1990, 269–468

[42] G. Olshanski, The problem of harmonic analysis on the infinite-dimensional unitary group, Journal of Funct. Anal., 205 (2003), 464–524.

[43] G. Olshanski, The representation ring of the unitary groups and Markov processes of algebraic origin, Adv. Math. 300 (2016), 544–615.

[44] L. Petrov, Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes, Probab. Theory Rel. Fields 160 (2013), 429–487.

[45] R. R. Phelps, Lectures on Choquet’s Theorem, Lecture Note in Mathematics 1757, Springer-Verlag, Berlin-New York, 2001.

[46] R. Sato, Quantized Vershik–Kerov theory and quantized central probability measures on branching graphs, Journal of Funct. Anal., 277 (2019), 2522–2557

[47] R. Sato, Type classification of extreme quantized characters, Ergodic Theory Dynam. Systems, 41(2021), 593– 605.

[48] R. Sato, Inductive limits of compact quantum groups and their unitary representations, Lett Math Phys (2021), published online.

[49] R. Sato, Markov semigroups on unitary duals generated by quantized characters, arXiv:2102.09082.

[50] R. Sato, Characters of infinite-dimensional quantum classical groups: BCD cases, arXiv:2106.12771.

[51] S. Stratila, D. Voiculescu, Representations of AF-Algebras and of the Group U(∞), Lecture Notes in Mathe- matics 486, Springer-Verlag, Berlin-New York, 1975.

[52] Z. Takeda, On the representations of operator algebra, Proc. Japan Acad. 30 (1954), 299–304.

[53] Z. Takeda, On the representations of operator algebra II, Tˆohoku Math. J. (2)6 (1954), 212–219.

[54] Z. Takeda, Inductive limit and infinite direct product of operator algebras, Tˆohoku Math. J. (2)7 (1955), 67–86.

[55] M. Takesaki, Algebraic equivalence of locally normal representations, Pacific J. Math. 34 (1970), 807–816.

[56] M. Takesaki, Theory of Operator Algebras II, Encyclopedia of Mathematical Sciences 127, Springer, 2003.

[57] E. Thoma, Die unzerlegbaren, positive-definiten Klassenfunktionen der abz¨ahlbar unendlichen, symmetrischen Gruppe, Math. Zeitschr. 85(1964), pp. 40–61.

[58] R. Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Commun. Math. Phys. 275 (2007), 271–296

[59] Y. Ueda, Spherical representations of C∗-flows, preprint, arXiv:2010.15324

[60] A. M. Vershik, S. V. Kerov, Characters and factor representations of the infinite symmetric group, Dokl. Akad. Nauk. SSSR 257 (1981), no. 5, 1037–1040

[61] A. M. Vershik, S. V. Kerov, Characters and factor representations of the infinite unitary group, Sov. Math. Dokl. 26 (1982), 570–574.

[62] D. Voiculescu, Repr´esentations factorielles de type II de U (∞), J. Math. Pures Appl. 55 (1976), 1–20.

[63] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.

[64] S. Yamagami, On unitary representation theories of compact quantum groups, Commun. Math. Phys., 167 (1995), 509–529

[65] M. Yoshida, Odometer action on Risesz product, J. Austral. Math. Soc. (Series A) 61 (1996), 141–149.

[66] D. P. Z˘elobenko, Compact Lie groups and their representations, Translations of Mathematical Monographs 40, Amer. Math. Soc., 1973.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る