リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus

Ozaki, Shogo 尾﨑, 省吾 オザキ, ショウゴ Jenal, Urs Katayama, Tsutomu 片山, 勉 カタヤマ, ツトム 九州大学

2020.03

概要

Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that ass

この論文で使われている画像

参考文献

1. Marczynski GT, Petit K, Patel P. 2019. Crosstalk regulation between

bacterial chromosome replication and chromosome partitioning. Front

Microbiol 10:279. https://doi.org/10.3389/fmicb.2019.00279.

2. Surovtsev IV, Jacobs-Wagner C. 2018. Subcellular organization: a critical

feature of bacterial cell replication. Cell 172:1271–1293. https://doi.org/

10.1016/j.cell.2018.01.014.

3. Reyes-Lamothe R, Sherratt DJ. 2019. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 17:467– 478.

https://doi.org/10.1038/s41579-019-0212-7.

4. Katayama T, Kasho K, Kawakami H. 2017. The DnaA cycle in Escherichia

coli: activation, function and inactivation of the initiator protein. Front

Microbiol 8:2496. https://doi.org/10.3389/fmicb.2017.02496.

5. Taniguchi S, Kasho K, Ozaki S, Katayama T. 2019. Escherichia coli CrfC

protein, a nucleoid partition factor, localizes to nucleoid poles via the

activities of specific nucleoid-associated proteins. Front Microbiol 10:72.

https://doi.org/10.3389/fmicb.2019.00072.

6. Haeusser DP, Margolin W. 2016. Splitsville: structural and functional

insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14:305–319.

https://doi.org/10.1038/nrmicro.2016.26.

7. Badrinarayanan A, Le TBK, Laub MT. 2015. Bacterial chromosome organization and segregation. Annu Rev Cell Dev Biol 31:171–199. https://

doi.org/10.1146/annurev-cellbio-100814-125211.

8. den Blaauwen T, Hamoen LW, Levin PA. 2017. The divisome at 25: the

road ahead. Curr Opin Microbiol 36:85–94. https://doi.org/10.1016/j.mib

.2017.01.007.

9. Männik J, Bailey MW. 2015. Spatial coordination between chromosomes

and cell division proteins in Escherichia coli. Front Microbiol 6:306.

https://doi.org/10.3389/fmicb.2015.00306.

March/April 2020 Volume 11 Issue 2 e00487-20

10. Adams DW, Errington J. 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642– 653.

https://doi.org/10.1038/nrmicro2198.

11. Löwe J, Amos LA. 1998. Crystal structure of the bacterial cell-division

protein FtsZ. Nature 391:203–206. https://doi.org/10.1038/34472.

12. Bi E, Lutkenhaus J. 1991. FtsZ ring structure associated with division in

Escherichia coli. Nature 354:161–164. https://doi.org/10.1038/354161a0.

13. Erickson HP, Taylor DW, Taylor KA, Bramhill D. 1996. Bacterial cell

division protein FtsZ assembles into protofilament sheets and minirings,

structural homologs of tubulin polymers. Proc Natl Acad Sci U S A

93:519 –523. https://doi.org/10.1073/pnas.93.1.519.

14. Goley ED, Yeh Y-C, Hong S-H, Fero MJ, Abeliuk E, McAdams HH, Shapiro

L. 2011. Assembly of the Caulobacter cell division machine. Mol Microbiol 80:1680 –1698. https://doi.org/10.1111/j.1365-2958.2011.07677.x.

15. Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J. 2017. GTPase

activity-coupled treadmilling of the bacterial tubulin FtsZ organizes

septal cell wall synthesis. Science 355:744 –747. https://doi.org/10.1126/

science.aak9995.

16. Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y,

Dekker C, Holden S, VanNieuwenhze MS, Brun YV, Garner EC. 2017.

Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739 –743. https://doi.org/10.1126/science

.aak9973.

17. de Boer PAJ, Crossley RE, Rothfield LI. 1989. A division inhibitor and a

topological specificity factor coded for by the minicell locus determine

proper placement of the division septum in E. coli. Cell 56:641– 649.

https://doi.org/10.1016/0092-8674(89)90586-2.

18. Raskin DM, De Boer P. 1997. The MinE ring: an FtsZ-independent cell

mbio.asm.org 17

Downloaded from https://journals.asm.org/journal/mbio on 09 December 2022 by 133.5.227.72.

ACKNOWLEDGMENTS

We thank A. Schmidt and E. Lezan for the MS analysis, C. Beisel for sequencing, A.

Kaczmarczyk for plasmid construction and critical review of the manuscript, and F.

Hamburger and K. Ozaki for plasmid construction.

This work was supported by an ERC grant and MEXT/JSPS KAKENHI (grant number

JP18H02377).

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

structure required for selection of the correct division site in E. coli. Cell

91:685– 694. https://doi.org/10.1016/S0092-8674(00)80455-9.

Hu Z, Lutkenhaus J. 1999. Topological regulation of cell division in

Escherichia coli involves rapid pole to pole oscillation of the division

inhibitor MinC under the control of MinD and MinE. Mol Microbiol

34:82–90. https://doi.org/10.1046/j.1365-2958.1999.01575.x.

Park KT, Villar MT, Artigues A, Lutkenhaus J. 2017. MinE conformational

dynamics regulate membrane binding, MinD interaction, and Min oscillation. Proc Natl Acad Sci U S A 114:7497–7504. https://doi.org/10.1073/

pnas.1707385114.

Raskin DM, de Boer PA. 1999. Rapid pole-to-pole oscillation of a protein

required for directing division to the middle of Escherichia coli. Proc Natl

Acad Sci U S A 96:4971– 4976. https://doi.org/10.1073/pnas.96.9.4971.

Bernhardt TG, de Boer P. 2005. SlmA, a nucleoid-associated, FtsZ binding

protein required for blocking septal ring assembly over chromosomes in E.

coli. Mol Cell 18:555–564. https://doi.org/10.1016/j.molcel.2005.04.012.

Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MA,

López-Álvarez M, Margolin W, Keating CD, Rivas G. 2019. Bacterial FtsZ

protein forms phase-separated condensates with its nucleoid-associated

inhibitor SlmA. EMBO Rep 20:e45946. https://doi.org/10.15252/embr

.201845946.

Schumacher MA, Zeng W. 2016. Structures of the nucleoid occlusion

protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ. Proc Natl Acad Sci U S A 113:4988 – 4993. https://doi

.org/10.1073/pnas.1602327113.

Bernhardt TG, De Boer P. 2004. Screening for synthetic lethal mutants in

Escherichia coli and identification of EnvC (YibP) as a periplasmic septal

ring factor with murein hydrolase activity. Mol Microbiol 52:1255–1269.

https://doi.org/10.1111/j.1365-2958.2004.04063.x.

Huang K-H, Durand-Heredia J, Janakiraman A. 2013. FtsZ ring stability: of

bundles, tubules, crosslinks, and curves. J Bacteriol 195:1859 –1868.

https://doi.org/10.1128/JB.02157-12.

Galli E, Gerdes K. 2010. Spatial resolution of two bacterial cell division

proteins: ZapA recruits ZapB to the inner face of the Z-ring. Mol Microbiol 76:1514 –1526. https://doi.org/10.1111/j.1365-2958.2010.07183.x.

Gueiros-Filho FJ, Losick R. 2002. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ.

Genes Dev 16:2544 –2556. https://doi.org/10.1101/gad.1014102.

Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. 2017. A

conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol Microbiol 105:721–740. https://doi.org/10.1111/

mmi.13731.

Männik J, Castillo DE, Yang D, Siopsis G, Männik J. 2016. The role of MatP,

ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli. Nucleic Acids Res 44:1216 –1226. https://doi.org/10.1093/nar/

gkv1484.

Ebersbach G, Galli E, Møller-Jensen J, Löwe J, Gerdes K. 2008. Novel

coiled-coil cell division factor ZapB stimulates Z ring assembly and cell

division. Mol Microbiol 68:720 –735. https://doi.org/10.1111/j.1365-2958

.2008.06190.x.

Espéli O, Borne R, Dupaigne P, Thiel A, Gigant E, Mercier R, Boccard F.

2012. A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 31:3198 –3211. https://doi.org/

10.1038/emboj.2012.128.

Mercier R, Petit M-A, Schbath S, Robin S, El Karoui M, Boccard F, Espéli O.

2008. The MatP/matS site-specific system organizes the terminus region

of the E. coli chromosome into a macrodomain. Cell 135:475– 485.

https://doi.org/10.1016/j.cell.2008.08.031.

Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O,

Boccard F, Koszul R. 2018. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172:

771–783.e18. https://doi.org/10.1016/j.cell.2017.12.027.

Niki H, Yamaichi Y, Hiraga S. 2000. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14:212–223.

Dupaigne P, Tonthat NK, Espéli O, Whitfill T, Boccard F, Schumacher MA.

2012. Molecular basis for a protein-mediated DNA-bridging mechanism

that functions in condensation of the E. coli chromosome. Mol Cell

48:560 –571. https://doi.org/10.1016/j.molcel.2012.09.009.

Hallez R, Delaby M, Sanselicio S, Viollier PH. 2017. Hit the right spots: cell

cycle control by phosphorylated guanosines in alphaproteobacteria. Nat

Rev Microbiol 15:137–148. https://doi.org/10.1038/nrmicro.2016.183.

Ozaki S. 2019. Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet Syst 94:183–196. https://doi.org/10.1266/

ggs.19-00011.

March/April 2020 Volume 11 Issue 2 e00487-20

39. Tsokos CG, Laub MT. 2012. Polarity and cell fate asymmetry in Caulobacter crescentus. Curr Opin Microbiol 15:744 –750. https://doi.org/10

.1016/j.mib.2012.10.011.

40. Lasker K, Mann TH, Shapiro L. 2016. An intracellular compass spatially

coordinates cell cycle modules in Caulobacter crescentus. Curr Opin

Microbiol 33:131–139. https://doi.org/10.1016/j.mib.2016.06.007.

41. Curtis PD, Brun YV. 2010. Getting in the loop: regulation of development

in Caulobacter crescentus. Microbiol Mol Biol Rev 74:13– 41. https://doi

.org/10.1128/MMBR.00040-09.

42. Thanbichler M, Shapiro L. 2006. MipZ, a spatial regulator coordinating

chromosome segregation with cell division in Caulobacter. Cell 126:

147–162. https://doi.org/10.1016/j.cell.2006.05.038.

43. Kiekebusch D, Michie KA, Essen L-O, Löwe J, Thanbichler M. 2012.

Localized dimerization and nucleoid binding drive gradient formation

by the bacterial cell division inhibitor MipZ. Mol Cell 46:245–259. https://

doi.org/10.1016/j.molcel.2012.03.004.

44. Brown NL, Stoyanov JV, Kidd SP, Hobman JL. 2003. The MerR family of

transcriptional regulators. FEMS Microbiol Rev 27:145–163. https://doi

.org/10.1016/S0168-6445(03)00051-2.

45. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams

HH, Shapiro L. 2004. Rapid and sequential movement of individual

chromosomal loci to specific subcellular locations during bacterial DNA

replication. Proc Natl Acad Sci U S A 101:9257–9262. https://doi.org/10

.1073/pnas.0402606101.

46. Muir RE, Gober JW. 2005. Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus. J

Bacteriol 187:949 –960. https://doi.org/10.1128/JB.187.3.949-960.2005.

47. Thanbichler M, Iniesta AA, Shapiro L. 2007. A comprehensive set of

plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35:e137. https://doi.org/10.1093/

nar/gkm818.

48. Radhakrishnan SK, Pritchard S, Viollier PH. 2010. Coupling prokaryotic

cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 18:90 –101. https://doi.org/10.1016/j

.devcel.2009.10.024.

49. Beaufay F, Coppine J, Mayard A, Laloux G, De Bolle X, Hallez R. 2015. A

NAD-dependent glutamate dehydrogenase coordinates metabolism

with cell division in Caulobacter crescentus. EMBO J 34:1786 –1715.

https://doi.org/10.15252/embj.201490730.

50. Schofield WB, Lim HC, Jacobs-Wagner C. 2010. Cell cycle coordination

and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J 29:3068 –3081. https://doi.org/10.1038/

emboj.2010.207.

51. Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, Comolli LR, Moerner WE,

Shapiro L. 2010. A spindle-like apparatus guides bacterial chromosome

segregation. Nat Cell Biol 12:791–798. https://doi.org/10.1038/ncb2083.

52. Toro E, Hong SH, McAdams HH, Shapiro L. 2008. Caulobacter requires a

dedicated mechanism to initiate chromosome segregation. Proc Natl Acad

Sci U S A 105:15435–15440. https://doi.org/10.1073/pnas.0807448105.

53. Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L. 2000. Global

analysis of the genetic network controlling a bacterial cell cycle. Science

290:2144 –2148. https://doi.org/10.1126/science.290.5499.2144.

54. Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB, Pham JQ, Cui ZZ,

Dill DL, McAdams HH, Shapiro L. 2015. The global regulatory architecture

of transcription during the Caulobacter cell cycle. PLoS Genet 11:

e1006286. https://doi.org/10.1371/journal.pgen.1004831.

55. Yoshida Y, Kuroiwa H, Hirooka S, Fujiwara T, Ohnuma M, Yoshida M,

Misumi O, Kawano S, Kuroiwa T. 2009. The bacterial ZapA-like protein

ZED is required for mitochondrial division. Curr Biol 19:1491–1497.

https://doi.org/10.1016/j.cub.2009.07.035.

56. Takahara M, Takahashi H, Matsunaga S, Miyagishima S, Takano H, Sakai

A, Kawano S, Kuroiwa T. 2000. A putative mitochondrial ftsZ gene is

present in the unicellular primitive red alga Cyanidioschyzon merolae.

Mol Gen Genet 264:452– 460. https://doi.org/10.1007/s004380000307.

57. Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden

GI. 2000. Mitochondrial FtsZ in a chromophyte alga. Science 287:

1276 –1279. https://doi.org/10.1126/science.287.5456.1276.

58. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, JacobsWagner C. 2016. Oufti: an integrated software package for highaccuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99:767–777. https://doi.org/10.1111/mmi.13264.

59. Ducret A, Quardokus EM, Brun YV. 2016. MicrobeJ, a tool for high

throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1:16077. https://doi.org/10.1038/nmicrobiol.2016.77.

mbio.asm.org 18

Downloaded from https://journals.asm.org/journal/mbio on 09 December 2022 by 133.5.227.72.

Ozaki et al.

The Divisome and Replication Terminus Colocalize

March/April 2020 Volume 11 Issue 2 e00487-20

for the ATP-DnaA-dependent formation of open complexes at the replication origin. J Biol Chem 283:8351– 8362. https://doi.org/10.1074/jbc

.M708684200.

64. Reinders A, Hee C-S, Ozaki S, Mazur A, Boehm A, Schirmer T, Jenal U.

2016. Expression and genetic activation of cyclic di-GMP-specific phosphodiesterases in Escherichia coli. J Bacteriol 198:448 – 462. https://doi

.org/10.1128/JB.00604-15.

65. Kaczmarczyk A, Vorholt JA, Francez-Charlot A. 2013. Cumate-inducible

gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 79:6795– 6802. https://doi.org/10.1128/

AEM.02296-13.

66. Ozaki S, Schalch-Moser A, Zumthor L, Manfredi P, Ebbensgaard A,

Schirmer T, Jenal U. 2014. Activation and polar sequestration of PopA, a

c-di-GMP effector protein involved in Caulobacter crescentus cell cycle

control. Mol Microbiol 94:580 –594. https://doi.org/10.1111/mmi.12777.

mbio.asm.org 19

Downloaded from https://journals.asm.org/journal/mbio on 09 December 2022 by 133.5.227.72.

60. Ozaki S, Matsuda Y, Keyamura K, Kawakami H, Noguchi Y, Kasho K,

Nagata K, Masuda T, Sakiyama Y, Katayama T. 2013. A replicase clampbinding dynamin-like protein promotes colocalization of nascent DNA

strands and equipartitioning of chromosomes in E. coli. Cell Rep

4:985–995. https://doi.org/10.1016/j.celrep.2013.07.040.

61. Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller

S, Jenal U. 2015. Cyclic di-GMP acts as a cell cycle oscillator to drive

chromosome replication. Nature 523:236 –239. https://doi.org/10.1038/

nature14473.

62. Dubey BN, Lori C, Ozaki S, Fucile G, Plaza-Menacho I, Jenal U, Schirmer

T. 2016. Cyclic di-GMP mediates a histidine kinase/phosphatase switch

by noncovalent domain cross-linking. Sci Adv 2:e1600823. https://doi

.org/10.1126/sciadv.1600823.

63. Ozaki S, Kawakami H, Nakamura K, Fujikawa N, Kagawa W, Park SY,

Yokoyama S, Kurumizaka H, Katayama T. 2008. A common mechanism

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る