リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice

Oka, Yuichiro 大阪大学

2021.07.06

概要

Association projections from cortical pyramidal neurons connect disparate intrahemispheric cortical areas, which are implicated in higher cortical functions. The underlying developmental processes of these association projections, especially the initial phase before reaching the target areas, remain unknown. To visualize developing axons of individual neurons with association projections in the mouse neocortex, we devised a sparse labeling method that combined in utero electroporation and confocal imaging of flattened and optically cleared cortices. Using the promoter of an established callosal neuron marker gene that was expressed in over 80% of L2/3 neurons in the primary somatosensory cortex (S1) that project to the primary motor cortex (M1), we found that an association projection of a single neuron was the longest among the interstitial collaterals that branched out in L5 from the earlier-extended callosal projection. Collaterals to M1 elongated primarily within the cortical gray matter with little branching before reaching the target. Our results suggest that dual-projection neurons in S1 make a significant fraction of the association projections to M1, supporting the directed guidance mechanism in long-range corticocortical circuit formation over random projections followed by specific pruning.

この論文で使われている画像

参考文献

Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, McConnell SK. 2008. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 57:364–377.

Britanova O, de Juan Romero C, Cheung A, Kwan KY, SchwarkM, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sˇ estan N, Molnár Z, Tarabykin V. 2008. Satb2 is a postmi- totic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392.

Callaway EM, Katz LC. 1990. Emergence and refinement of clus- tered horizontal connections in cat striate cortex. J Neurosci. 10:1134–1153.

Chiang HL, Chen YJ, Lin HY, Tseng WYI, Gau SSF. 2017. Disorder- specific alteration in white matter structural property in adults with autism spectrum disorder relative to adults with ADHD and adult controls. Hum Brain Mapp. 38:384–395.

Coogan TA, Burkhalter A. 1993. Hierarchical organization of areas in rat visual cortex. J Neurosci. 13:3749–3772.

De León Reyes NS, Mederos S, Varela I, Weiss LA, Perea G, Galazo MJ, Nieto M. 2019. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat Commun. 10:4549.

Deck M, Lokmane L, Chauvet S, Mailhes C, Keita M, Niquille M, Yoshida M, Yoshida Y, Lebrand C, Mann F, et al. 2013. Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron. 77:472–484.

Druckmann S, Feng L, Lee B, Yook C, Zhao T, Magee JC, Kim J.2014. Structured synaptic connectivity between hippocampal regions. Neuron. 81:629–640.

Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, Chandrashekar J. 2016. A platform for brain-wide imag- ing and reconstruction of individual neurons. eLife. 5:e10566. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical pro-cessing in the primate cerebral cortex. Cereb Cortex. 1:1–47.

Fenlon LR, Suárez R, Richards LJ. 2017. The anatomy, organisation and development of contralateral callosal projections of the mouse somatosensory cortex. Brain Neurosci Adv. 1:1–9.

Fitzgerald J, Leemans A, Kehoe E, O’Hanlon E, Gallagher L,McGrath J. 2018. Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders. Eur J Neurosci. 47:652–661.

Fletcher LN, Williams SR. 2019. Neocortical topology governs the dendritic integrative capacity of layer 5 pyramidal neurons. Neuron. 101:76–90.e4.

Franklin KB, Paxinos G. 2008. The Mouse Brain in Stereotaxic Coor- dinates. Compact 3rd ed. Amsterdam (Netherlands): Elsevier Academic Press.

Goldman PS, Nauta WJH. 1977. Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 122:393–413.

Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. 2013. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci. 14:755–769.

Han Y, Kebschull JM, Campbell RAA, Cowan D, Imhof F, Zador AM, Mrsic-Flogel TD. 2018. The logic of single-cell projections from visual cortex. Nature. 556:51–56.

Hand RA, Khalid S, Tam E, Kolodkin AL. 2015. Axon dynamics during neocortical laminar innervation. Cell Rep. 12:172–182. Hutsler JJ, Lee DG, Porter KK. 2005. Comparative analysis of cor- tical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res. 1052:71–81.

Iguchi T, Yagi H, Wang C-C, Sato M. 2012. A tightly controlled conditional knockdown system using the Tol2 transposon- mediated technique. PLoS ONE. 7:e33380.

Innocenti GM, Fiore L, Caminiti R. 1977. Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett. 4:237–242.

Isseroff A, Schwartz ML, Dekker JJ, Goldman-Rakic PS. 1984. Columnar organization of callosal and associational projec- tions from rat frontal cortex. Brain Res. 293:213–223.

Ivy GO, Akers RM, Killackey HP. 1979. Differential distribution of callosal projection neurons in the neonatal and adult rat. Brain Res. 173:532–537.

Ivy GO, Killackey HP. 1982. Ontogenetic changes in the projec- tions of neocortical neurons. J Neurosci. 2:735–743.

Jones EG, Wise SP. 1977. Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J Comp Neurol. 175:391–437.

Jou RJ, Mateljevic N, Kaiser MD, Sugrue DR, Volkmar FR, Pelphrey KA. 2011. Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. Am J Neuroradiol. 32: 1607–1613.

Katz J, d’Albis MA, Boisgontier J, Poupon C, Mangin JF, Gue- vara P, Duclap D, Hamdani N, Petit J, Monnet D, et al. 2016. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism. Acta Psychiatr Scand. 134:31–39.

Kawasaki H, Toda T, Tanno K. 2013. In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol Open. 2:95–100.

Ke M-T, Fujimoto S, Imai T. 2013. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16:1154–1161.

Ke M-T, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima TS, Sato M, Imai T. 2016. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14:2718–2732.

Kebschull JM, Garcia da Silva P, Reid AP, Peikon ID, Albeanu DF, Zador AM. 2016. High-throughput mapping of single- neuron projections by sequencing of barcoded RNA. Neuron. 91:975–987.

LaMantia AS, Rakic P. 1990. Axon overproduction and elimina- tion in the corpus callosum of the developing rhesus monkey. J Neurosci. 10:2156–2175.

Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svo- boda K. 2011. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron. 72: 111–123.

Marin-Padilla M. 1978. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol. 152:109–126. Matsuda T, Cepko CL. 2007. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A.104:1027–1032.

Minamisawa G, Kwon SE, Chevée M, Brown SP, O’Connor DH. 2018. A non-canonical feedback circuit for rapid interactions between somatosensory cortices. Cell Rep. 23: 2718–2731.e6.

Mitchell BD, Macklis JD. 2005. Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice. J Comp Neurol. 482: 17–32.

Molyneaux BJ, Arlotta P, Fame RM, MacDonald JL, MacQuarrie KL, Macklis JD. 2009. Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J Neu- rosci. 29:12343–12354.

Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. 2007. A global double-f luorescent Cre reporter mouse. Genesis. 45: 593–605.

Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108:193–199.

O’Leary DDM, Stanfield BB, Cowan WM. 1981. Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal col- laterals rather than to the death of neurons. Dev Brain Res. 1: 607–617.

Price DJ, Blakemore C. 1985. Regressive events in the postnatal development of association projections in the visual cortex. Nature. 316:721–724.

Ren S-Q, Li Z, Lin S, Bergami M, Shi S-H. 2019. Precise long- range microcircuit-to-microcircuit communication connects the frontal and sensory cortices in the mammalian brain. Neuron. 104:385–401.e3.

Rockel AJ, Hiorns RW, Powell TPS. 1980. The basic uniformity in structure of the neocortex. Brain. 103:221–244.

Rockland KS. 2013. Collateral branching of long-distance cortical projections in monkey. J Comp Neurol. 521:4112–4123.

Ruifrok AC, Johnston DA. 2001. Quantification of histochemi- cal staining by color deconvolution. Anal Quant Cytol Histol. 23:291–299.

Saito K, Mizuguchi K, Horiike T, Dinh Duong TA, Shinmyo Y, Kawasaki H. 2019. Characterization of the inner and outer Fiber layers in the developing cerebral cortex of gyren- cephalic ferrets. Cereb Cortex. 29:4303–4311.

Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M,Miyata T. 2014. Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb Cortex. 24: 1301–1310.

Scannell JW, Blakemore C, Young MP. 1995. Analysis of connectivity in the cat cerebral cortex. J Neurosci. 15: 1463–1483.

Schwartz ML, Goldman-Rakic PS. 1982. Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates. Nature. 299:154–155.

Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. 2017. Evolution of the human nervous system function, structure, and development. Cell. 170:226–247.

Srivatsa S, Parthasarathy S, Molnár Z, Tarabykin V. 2015. Sip1 downstream effector ninein controls neocortical axonal growth, ipsilateral branching, and microtubule growth and stability. Neuron. 85:998–1012.

Takahashi N, Oertner TG, Hegemann P, Larkum ME. 2016. Active cortical dendrites modulate perception. Science. 354: 1587–1590.

Thompson A, Murphy D, Dell’Acqua F, Ecker C, McAlonan G, Howells H, Baron-Cohen S, Lai MC, Lombardo MV, the MRC AIMS Consortium, Catani M. 2017. Impaired communica- tion between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder. Biol Psychiatry. 81:211–219.

Velona T, Altounian M, Roque M, Hocine M, Bellon A, Briz CG,Salin P, Nieto M, Chauvet S, Mann F. 2019. PlexinD1 and Sema3E determine laminar positioning of heterotopically projecting callosal neurons. Mol Cell Neurosci. 100:103397.

Watakabe A, Kato S, Kobayashi K, Takaji M, Nakagami Y, Sadakane O, Ohtsuka M, Hioki H, Kaneko T, Okuno H, et al. 2012. Visualization of cortical projection neurons with retro- grade TET-Off lentiviral vector. PLoS ONE. 7:e46157.

Watakabe A, Ohsawa S, Hashikawa T, Yamamori T. 2006. Bind-ing and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys. J Comp Neurol. 499:258–273.

Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. 2014. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits. 8:110.

Yagi H, Oka Y, Komada M, Xie M-J, Noguchi K, Sato M. 2016. Filamin A interacting protein plays a role in proper position- ing of callosal projection neurons in the cortex. Neurosci Lett. 612:18–24.

Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CCH. 2013. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron. 80:1477–1490.

Yamashita T, Vavladeli A, Pala A, Galan K, Crochet S, Petersen SSA, Petersen CCH. 2018. Diverse long-range axonal projec- tions of excitatory layer 2/3 neurons in mouse barrel cortex. Front Neuroanat. 12:33.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る