リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transcutaneous carbon dioxide application suppresses the expression of cancer-associated fibroblasts markers in oral squamous cell carcinoma xenograft mouse model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transcutaneous carbon dioxide application suppresses the expression of cancer-associated fibroblasts markers in oral squamous cell carcinoma xenograft mouse model

Tadokoro, Yoshiaki Takeda, Daisuke Murakami, Aki Yatagai, Nanae Saito, Izumi Arimoto, Satomi Kakei, Yasumasa Akashi, Masaya Hasegawa, Takumi 神戸大学

2023.08.18

概要

Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Cancer-associated fibroblasts (CAFs) are the main stromal cells in the tumor microenvironment (TME). As CAFs promote tumor progression and hypoxia in the TME, regulating the conversion of normal fibroblasts (NFs) into CAFs is essential for improving the prognosis of patients with OSCC. We have previously reported the antitumor effects of transcutaneous carbon dioxide (CO₂) application in OSCC. However, the effects of reducing hypoxia in the TME remain unclear. In this study, we investigated whether CO₂ administration improves the TME by evaluating CAFs marker expression. Human OSCC cells (HSC-3) and normal human dermal fibroblasts (NHDF) were coinjected subcutaneously into the dorsal region of mice. CO₂ gas was applied twice a week for 3 weeks. The tumors were harvested six times after transcutaneous CO₂ application. The expression of CAFs markers (α-SMA, FAP, PDPN, and TGF-β) were evaluated by using real-time polymerase chain reaction and immunohistochemical staining. The expression of α-SMA, FAP, PDPN, and TGF-β was significantly increased over time after co-injection. In the CO₂-treated group, tumor growth was significantly suppressed after treatment initiation. In addition, the mRNA expression of these markers was significantly inhibited. Furthermore, immunohistochemical staining revealed a significant decrease in the protein expression of all CAFs markers in the CO₂-treated group. We confirmed that transcutaneous CO₂ application suppressed CAFs marker expression and tumor growth in OSCC xenograft mouse model.

この論文で使われている画像

関連論文

参考文献

1.

Shield KD, Ferlay J, Jemal A, Sankaranarayanan R, Chaturvedi AK, Bray F, et al. The global incidence

of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA Cancer J Clin. 2017; 67(1):51–64.

Epub 20161019. https://doi.org/10.3322/caac.21384 PMID: 28076666.

2.

Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;

133(9):2013–23. Epub 20130329. https://doi.org/10.1002/ijc.28112 PMID: 23417723.

3.

Tu IW, Shannon NB, Thankappan K, Balasubramanian D, Pillai V, Shetty V, et al. Risk Stratification in

Oral Cancer: A Novel Approach. Front Oncol. 2022; 12:836803. Epub 20220707. https://doi.org/10.

3389/fonc.2022.836803 PMID: 35875164; PubMed Central PMCID: PMC9301677.

4.

Wu T, Tang C, Tao R, Yong X, Jiang Q, Feng C. PD-L1-Mediated Immunosuppression in Oral Squamous Cell Carcinoma: Relationship With Macrophage Infiltration and Epithelial to Mesenchymal Transition Markers. Front Immunol. 2021; 12:693881. Epub 20210906. https://doi.org/10.3389/fimmu.2021.

693881 PMID: 34552581; PubMed Central PMCID: PMC8450501.

5.

Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA

Cancer J Clin. 2015; 65(5):401–21. Epub 20150727. https://doi.org/10.3322/caac.21293 PMID:

26215712.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290357 August 18, 2023

9 / 12

PLOS ONE

Transcutaneous CO2 suppresses the expression of CAFs markers in OSCC xenograft model

6.

Graizel D, Zlotogorski-Hurvitz A, Tsesis I, Rosen E, Kedem R, Vered M. Oral cancer-associated fibroblasts predict poor survival: Systematic review and meta-analysis. Oral Dis. 2020; 26(4):733–44. Epub

20190715. https://doi.org/10.1111/odi.13140 PMID: 31179584.

7.

Dourado MR, Guerra ENS, Salo T, Lambert DW, Coletta RD. Prognostic value of the immunohistochemical detection of cancer-associated fibroblasts in oral cancer: A systematic review and meta-analysis. J Oral Pathol Med. 2018; 47(5):443–53. Epub 20170905. https://doi.org/10.1111/jop.12623 PMID:

28782893.

8.

Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated

fibroblasts and their markers. Int J Cancer. 2020; 146(4):895–905. Epub 20190228. https://doi.org/10.

1002/ijc.32193 PMID: 30734283; PubMed Central PMCID: PMC6972582.

9.

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for

advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020; 20(3):174–86.

Epub 20200124. https://doi.org/10.1038/s41568-019-0238-1 PMID: 31980749; PubMed Central

PMCID: PMC7046529.

10.

Li YY, Zhou CX, Gao Y. Interaction between oral squamous cell carcinoma cells and fibroblasts through

TGF-β1 mediated by podoplanin. Exp Cell Res. 2018; 369(1):43–53. Epub 20180430. https://doi.org/

10.1016/j.yexcr.2018.04.029 PMID: 29719198.

11.

Huang Q, Hsueh CY, Shen YJ, Guo Y, Huang JM, Zhang YF, et al. Small extracellular vesicle-packaged

TGFβ1 promotes the reprogramming of normal fibroblasts into cancer-associated fibroblasts by regulating fibronectin in head and neck squamous cell carcinoma. Cancer Lett. 2021; 517:1–13. Epub

20210603. https://doi.org/10.1016/j.canlet.2021.05.017 PMID: 34089808.

12.

Han S, Xu W, Wang Z, Qi X, Wang Y, Ni Y, et al. Crosstalk between the HIF-1 and Toll-like receptor/

nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget. 2016;

7(25):37773–89. https://doi.org/10.18632/oncotarget.9329 PMID: 27191981; PubMed Central PMCID:

PMC5122348.

13.

Teppo S, Sundquist E, Vered M, Holappa H, Parkkisenniemi J, Rinaldi T, et al. The hypoxic tumor

microenvironment regulates invasion of aggressive oral carcinoma cells. Exp Cell Res. 2013; 319

(4):376–89. Epub 20121219. https://doi.org/10.1016/j.yexcr.2012.12.010 PMID: 23262025.

14.

Zheng Y, Ni Y, Huang X, Wang Z, Han W. Overexpression of HIF-1α indicates a poor prognosis in tongue carcinoma and may be associated with tumour metastasis. Oncol Lett. 2013; 5(4):1285–9. Epub

20130207. https://doi.org/10.3892/ol.2013.1185 PMID: 23599780; PubMed Central PMCID:

PMC3629117.

15.

Zhang Z, Gao Z, Rajthala S, Sapkota D, Dongre H, Parajuli H, et al. Metabolic reprogramming of normal

oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and

precedes their activation into carcinoma associated fibroblasts. Cell Mol Life Sci. 2020; 77(6):1115–33.

Epub 20190703. https://doi.org/10.1007/s00018-019-03209-y PMID: 31270582.

16.

Ziani L, Buart S, Chouaib S, Thiery J. Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity. Oncoimmunology. 2021; 10

(1):1950953. Epub 20210725. https://doi.org/10.1080/2162402X.2021.1950953 PMID: 34367731;

PubMed Central PMCID: PMC8312612.

17.

Sakai Y, Miwa M, Oe K, Ueha T, Koh A, Niikura T, et al. A novel system for transcutaneous application

of carbon dioxide causing an "artificial Bohr effect" in the human body. PLoS One. 2011; 6(9):e24137.

Epub 20110908. https://doi.org/10.1371/journal.pone.0024137 PMID: 21931656; PubMed Central

PMCID: PMC3169585.

18.

Oe K, Ueha T, Sakai Y, Niikura T, Lee SY, Koh A, et al. The effect of transcutaneous application of carbon dioxide (CO₂) on skeletal muscle. Biochem Biophys Res Commun. 2011; 407(1):148–52. Epub

20110301. https://doi.org/10.1016/j.bbrc.2011.02.128 PMID: 21371433.

19.

Takeda D, Hasegawa T, Ueha T, Imai Y, Sakakibara A, Minoda M, et al. Transcutaneous carbon dioxide induces mitochondrial apoptosis and suppresses metastasis of oral squamous cell carcinoma in

vivo. PLoS One. 2014; 9(7):e100530. Epub 20140702. https://doi.org/10.1371/journal.pone.0100530

PMID: 24988190; PubMed Central PMCID: PMC4079455.

20.

Yatagai N, Hasegawa T, Amano R, Saito I, Arimoto S, Takeda D, et al. Transcutaneous Carbon Dioxide

Decreases Immunosuppressive Factors in Squamous Cell Carcinoma In Vivo. Biomed Res Int. 2021;

2021:5568428. Epub 20210702. https://doi.org/10.1155/2021/5568428 PMID: 34307656; PubMed

Central PMCID: PMC8270696.

21.

Rikimaru K, Toda H, Tachikawa N, Kamata N, Enomoto S. Growth of the malignant and nonmalignant

human squamous cells in a protein-free defined medium. In Vitro Cell Dev Biol. 1990; 26(9):849–56.

https://doi.org/10.1007/BF02624609 PMID: 2228902.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290357 August 18, 2023

10 / 12

PLOS ONE

Transcutaneous CO2 suppresses the expression of CAFs markers in OSCC xenograft model

22.

Okada Y, Ueno H, Katagiri M, Oneyama T, Shimomura K, Sakurai S, et al. Experimental study of antiangiogenic gene therapy targeting VEGF in oral cancer. Odontology. 2010; 98(1):52–9. Epub

20100216. https://doi.org/10.1007/s10266-009-0117-4 PMID: 20155508.

23.

Zhang D, Song Y, Li D, Liu X, Pan Y, Ding L, et al. Cancer-associated fibroblasts promote tumor progression by lncRNA-mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma. Mol Oncol.

2022; 16(3):780–94. Epub 20210610. https://doi.org/10.1002/1878-0261.12935 PMID: 33657265;

PubMed Central PMCID: PMC8807363.

24.

Harada R, Kawamoto T, Ueha T, Minoda M, Toda M, Onishi Y, et al. Reoxygenation using a novel CO2

therapy decreases the metastatic potential of osteosarcoma cells. Exp Cell Res. 2013; 319(13):1988–

97. Epub 20130529. https://doi.org/10.1016/j.yexcr.2013.05.019 PMID: 23727023.

25.

Lin NN, Wang P, Zhao D, Zhang FJ, Yang K, Chen R. Significance of oral cancer-associated fibroblasts

in angiogenesis, lymphangiogenesis, and tumor invasion in oral squamous cell carcinoma. J Oral Pathol

Med. 2017; 46(1):21–30. Epub 20160527. https://doi.org/10.1111/jop.12452 PMID: 27229731.

26.

Takahashi H, Sakakura K, Kawabata-Iwakawa R, Rokudai S, Toyoda M, Nishiyama M, et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015; 64(11):1407–17. Epub 20150723. https://doi.org/10.1007/s00262015-1742-0 PMID: 26201938.

27.

Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy.

Genes Dev. 2016; 30(9):1002–19. https://doi.org/10.1101/gad.279737.116 PMID: 27151975; PubMed

Central PMCID: PMC4863733.

28.

Mezawa Y, Orimo A. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in

human carcinomas. Cell Tissue Res. 2016; 365(3):675–89. Epub 20160810. https://doi.org/10.1007/

s00441-016-2471-1 PMID: 27506216.

29.

Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010; 330

(6005):827–30. https://doi.org/10.1126/science.1195300 PMID: 21051638.

¨ hlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014; 211

(8):1503–23. https://doi.org/10.1084/jem.20140692 PMID: 25071162; PubMed Central PMCID:

PMC4113948.

30.

31.

Huber MA, Kraut N, Park JE, Schubert RD, Rettig WJ, Peter RU, et al. Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin

tumors. J Invest Dermatol. 2003; 120(2):182–8. https://doi.org/10.1046/j.1523-1747.2003.12035.x

PMID: 12542520.

32.

Inoue H, Tsuchiya H, Miyazaki Y, Kikuchi K, Ide F, Sakashita H, et al. Podoplanin expressing cancerassociated fibroblasts in oral cancer. Tumor Biology. 2014; 35(11):11345–52. https://doi.org/10.1007/

s13277-014-2450-7 PMID: 25119595

33.

Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, et al. Podoplanin emerges as a

functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol. 2018; 78:126–36. Epub

20180220. https://doi.org/10.1016/j.oraloncology.2018.01.011 PMID: 29496040.

34.

Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence

of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 2006; 9(4):261–72. https://doi.org/10.1016/j.ccr.2006.03.010 PMID: 16616332.

35.

Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci. 2019; 20(11). Epub 20190605. https://doi.org/10.3390/ijms20112767 PMID:

31195692; PubMed Central PMCID: PMC6600375.

36.

David CJ, Massague´ J. Contextual determinants of TGFβ action in development, immunity and cancer.

Nat Rev Mol Cell Biol. 2018; 19(7):419–35. https://doi.org/10.1038/s41580-018-0007-0 PMID:

29643418; PubMed Central PMCID: PMC7457231.

37.

Knops AM, South A, Rodeck U, Martinez-Outschoorn U, Harshyne LA, Johnson J, et al. Cancer-Associated Fibroblast Density, Prognostic Characteristics, and Recurrence in Head and Neck Squamous Cell

Carcinoma: A Meta-Analysis. Front Oncol. 2020; 10:565306. Epub 20201127. https://doi.org/10.3389/

fonc.2020.565306 PMID: 33330034; PubMed Central PMCID: PMC7729160.

38.

Ding L, Zhang Z, Shang D, Cheng J, Yuan H, Wu Y, et al. α-Smooth muscle actin-positive myofibroblasts, in association with epithelial-mesenchymal transition and lymphogenesis, is a critical prognostic

parameter in patients with oral tongue squamous cell carcinoma. J Oral Pathol Med. 2014; 43(5):335–

43. Epub 20131209. https://doi.org/10.1111/jop.12143 PMID: 24313357.

39.

Kreppel M, Scheer M, Drebber U, Ritter L, Zo¨ller JE. Impact of podoplanin expression in oral squamous

cell carcinoma: clinical and histopathologic correlations. Virchows Arch. 2010; 456(5):473–82. https://

doi.org/10.1007/s00428-010-0915-7 PMID: 20393745.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290357 August 18, 2023

11 / 12

PLOS ONE

Transcutaneous CO2 suppresses the expression of CAFs markers in OSCC xenograft model

40.

Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular

matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017; 45(1):229–36. https://doi.

org/10.1042/BST20160387 PMID: 28202677; PubMed Central PMCID: PMC5371349.

41.

Yegodayev KM, Novoplansky O, Golden A, Prasad M, Levin L, Jagadeeshan S, et al. TGF-Beta-Activated Cancer-Associated Fibroblasts Limit Cetuximab Efficacy in Preclinical Models of Head and Neck

Cancer. Cancers (Basel). 2020; 12(2). Epub 20200203. https://doi.org/10.3390/cancers12020339

PMID: 32028632; PubMed Central PMCID: PMC7073231.

42.

Semenza GL. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta. 2016; 1863(3):382–91. Epub 20150614. https://doi.org/10.1016/j.bbamcr.2015.05.

036 PMID: 26079100; PubMed Central PMCID: PMC4678039.

43.

Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in

cancer cells. Mol Metab. 2019; 23:98–126. Epub 20190206. https://doi.org/10.1016/j.molmet.2019.01.

014 PMID: 30837197; PubMed Central PMCID: PMC6479761.

44.

Hartmann BR, Bassenge E, Pittler M. Effect of carbon dioxide-enriched water and fresh water on the

cutaneous microcirculation and oxygen tension in the skin of the foot. Angiology. 1997; 48(4):337–43.

https://doi.org/10.1177/000331979704800406 PMID: 9112881.

45.

Onishi Y, Kawamoto T, Ueha T, Kishimoto K, Hara H, Fukase N, et al. Transcutaneous application of

carbon dioxide (CO2) induces mitochondrial apoptosis in human malignant fibrous histiocytoma in vivo.

PLoS One. 2012; 7(11):e49189. Epub 20121115. https://doi.org/10.1371/journal.pone.0049189 PMID:

23166610; PubMed Central PMCID: PMC3499556.

46.

Yatagai N, Hasegawa T, Kyotani K, Noda T, Amano R, Saito I, et al. Exploratory clinical trial to evaluate

the efficacy and safety of carbon dioxide paste in healthy people. Medicine (Baltimore). 2022; 101(29):

e29511. Epub 20220722. https://doi.org/10.1097/MD.0000000000029511 PMID: 35866800; PubMed

Central PMCID: PMC9302358.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290357 August 18, 2023

12 / 12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る