リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transcranial Cortex-Wide Fluorescence Imaging through a Fully Intact Skull, as a Powerful Tool for Functional Mapping: Less Invasive Macroscopic Imaging of Cortical Ca2+ Dynamics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transcranial Cortex-Wide Fluorescence Imaging through a Fully Intact Skull, as a Powerful Tool for Functional Mapping: Less Invasive Macroscopic Imaging of Cortical Ca2+ Dynamics

MONAI, Hiromu お茶の水女子大学

2020.10.28

概要

Astrocytes are neural cells that play an essential role in the modulation of neurotransmission and synaptic plasticity in the brain, yet the main target of neurophysiological research has been neural networks. One reason is that astrocytes show less fluctuation in their membrane potentials, unlike neurons, and it is difficult to evaluate their activity by electrical measurements. On the other hand, the Ca2+ imaging technique has revealed that astrocytes can vary widely in intracellular Ca2+ concentration. In our laboratory, we use a transgenic mouse line (G7NG817) that expresses G-CaMP7, a Ca2+ sensor protein, in astrocytes and a portion of the excitatory neurons, to visualize cortical function in vivo. As G7NG817 mice show a dense expression of G-CaMP7 in the cerebral cortex, it is possible to image brain Ca2+ dynamics without thinning the skull using standard epifluorescence microscopy. The advantage of this transcranial cortex-wide imaging technique is to observe the more native and stable activity of a wide field of view even under awake conditions compared to the conventional open-skull imaging method because it induces less stress and inflammation in the brain. Using the G7NG817 mouse, we have reported that specific neuronal populations in the cortex were activated by distinct modalities, such as light, sound, or whisker mechanical stimulation. It is confirmed that regional and rapid responses were due to neuronal activities. On the contrary, astrocytes showed more global and slower dynamics than neurons. We found that it is possible to discriminate neuronal and astrocytic activities, even under transcranial imaging, by the different dynamics of the Ca2+ event. In this review, we will review the recent development of the fully intact transcranial cortex-wide Ca2+ imaging technique, and in the latter part, introduce some practical examples of G7NG817 mice.
紀要論文

参考文献

Transcranial cortex-wide imaging is a powerful tool to

monitor brain activity continuously with a broader field

of view, stable and non-invasively. Notably, the

technique is useful for the initial evaluation of cortical

functions in the various transgenic mouse, including

the disease model. Besides, it can also visualize

synaptic plasticity, which is the basis for learning and

long-term

memory.

Moreover,

standard

epifluorescence microscopy is available for

transcranial imaging, while it has lower resolution and

more depth limitations than two-photon microscopy.

Hopefully, three-photon microscopy [54,55] will soon

enable us to observe deeper areas using cellular

resolution without opening the skull.

1. N.J. Sofroniew, D. Flickinger, J. King, K. Svoboda,

September 2020

Transcranial Cortex-Wide Fluorescence Imaging through a Fully Intact Skull, as a Powerful

Tool for Functional Mapping: Less Invasive Macroscopic Imaging of Cortical Ca2+ Dynamics

A large field of view two-photon mesoscope with

subcellular resolution for in vivo imaging, ELife.

5 (2016) e14472.

https://doi.org/10.7554/eLife.14472.

2. C. Stringer, M. Pachitariu, N. Steinmetz, C.B.

Reddy, M. Carandini, K.D. Harris, Spontaneous

behaviors drive multidimensional, brainwide

activity, Science. 364 (2019).

https://doi.org/10.1126/science.aav7893.

3. C. Stringer, M. Pachitariu, N. Steinmetz, M.

Carandini, K.D. Harris, High-dimensional

geometry of population responses in visual cortex,

Nature. 571 (2019) 361–365.

https://doi.org/10.1038/s41586-019-1346-5.

4. M.P. Vanni, T.H. Murphy, Mesoscale Transcranial

Spontaneous Activity Mapping in GCaMP3

Transgenic Mice Reveals Extensive Reciprocal

Connections between Areas of Somatomotor

Cortex, Journal of Neuroscience. 34 (2014)

15931–15946.

https://doi.org/10.1523/JNEUROSCI.1818-14.2014.

5. H. Monai, M. Ohkura, M. Tanaka, Y. Oe, A.

Konno, H. Hirai, K. Mikoshiba, S. Itohara, J.

Nakai, Y. Iwai, H. Hirase, Calcium imaging

reveals glial involvement in transcranial direct

current stimulation-induced plasticity in mouse

brain, Nature Communications. 7 (2016) 11100.

https://doi.org/10.1038/ncomms11100.

6. T.H. Murphy, J.D. Boyd, F. Bolaños, M.P. Vanni,

G. Silasi, D. Haupt, J.M. LeDue, High-throughput

automated home-cage mesoscopic functional

imaging of mouse cortex, Nature Communications.

7 (2016) 1–12.

https://doi.org/10.1038/ncomms11611.

7. G. Silasi, D. Xiao, M.P. Vanni, A.C.N. Chen, T.H.

Murphy, Intact skull chronic windows for

mesoscopic wide-field imaging in awake mice,

Journal of Neuroscience Methods. 267 (2016)

141–149.

https://doi.org/10.1016/j.jneumeth.2016.04.012.

8. Y. Xie, A.W. Chan, A. McGirr, S. Xue, D. Xiao, H.

Zeng, T.H. Murphy, Resolution of HighFrequency Mesoscale Intracortical Maps Using

the Genetically Encoded Glutamate Sensor

iGluSnFR, J. Neurosci. 36 (2016) 1261–1272.

https://doi.org/10.1523/JNEUROSCI.2744-15.2016.

9. W.E. Allen, I.V. Kauvar, M.Z. Chen, E.B.

Richman, S.J. Yang, K. Chan, V. Gradinaru, B.E.

Deverman, L. Luo, K. Deisseroth, Global

Representations of Goal-Directed Behavior in

Distinct Cell Types of Mouse Neocortex, Neuron.

94 (2017) 891-907.e6.

https://doi.org/10.1016/j.neuron.2017.04.017.

10. M. Balbi, M.P. Vanni, G. Silasi, Y. Sekino, L.

11.

12.

13.

14.

15.

16.

17.

18.

Bolanos, J.M. LeDue, T.H. Murphy, Targeted

ischemic stroke induction and mesoscopic

imaging assessment of blood flow and ischemic

depolarization in awake mice, NPh. 4 (2017)

035001.

https://doi.org/10.1117/1.NPh.4.3.035001.

H. Makino, C. Ren, H. Liu, A.N. Kim, N.

Kondapaneni, X. Liu, D. Kuzum, T. Komiyama,

Transformation of Cortex-wide Emergent

Properties during Motor Learning, Neuron. 94

(2017) 880-890.e8.

https://doi.org/10.1016/j.neuron.2017.04.015.

A. McGirr, J. LeDue, A.W. Chan, Y. Xie, T.H.

Murphy, Cortical functional hyperconnectivity in

a mouse model of depression and selective

network effects of ketamine, Brain. 140 (2017)

2210–2225.

https://doi.org/10.1093/brain/awx142.

N. Nakai, M. Nagano, F. Saitow, Y. Watanabe, Y.

Kawamura, A. Kawamoto, K. Tamada, H. Mizuma,

H. Onoe, Y. Watanabe, H. Monai, H. Hirase, J.

Nakatani, H. Inagaki, T. Kawada, T. Miyazaki, M.

Watanabe, Y. Sato, S. Okabe, K. Kitamura, M.

Kano, K. Hashimoto, H. Suzuki, T. Takumi,

Serotonin rebalances cortical tuning and behavior

linked to autism symptoms in 15q11-13 CNV mice,

Science Advances. 3 (2017) e1603001.

https://doi.org/10.1126/sciadv.1603001.

M.P. Vanni, A.W. Chan, M. Balbi, G. Silasi, T.H.

Murphy, Mesoscale Mapping of Mouse Cortex

Reveals Frequency-Dependent Cycling between

Distinct Macroscale Functional Modules, J.

Neurosci. 37 (2017) 7513–7533.

https://doi.org/10.1523/JNEUROSCI.3560-16.2017.

A. Gilad, Y. Gallero-Salas, D. Groos, F. Helmchen,

Behavioral Strategy Determines Frontal or

Posterior Location of Short-Term Memory in

Neocortex, Neuron. 99 (2018) 814-828.e7.

https://doi.org/10.1016/j.neuron.2018.07.029.

S. Kuroki, T. Yoshida, H. Tsutsui, M. Iwama, R.

Ando, T. Michikawa, A. Miyawaki, T. Ohshima, S.

Itohara, Excitatory Neuronal Hubs Configure

Multisensory Integration of Slow Waves in

Association Cortex, Cell Reports. 22 (2018) 2873–

2885.

https://doi.org/10.1016/j.celrep.2018.02.056.

L. Zhu, C.R. Lee, D.J. Margolis, L. Najafizadeh,

Decoding cortical brain states from widefield

calcium imaging data using visibility graph,

Biomed Opt Express. 9 (2018) 3017–3036.

https://doi.org/10.1364/BOE.9.003017.

M. Balbi, M.P. Vanni, M.J. Vega, G. Silasi, Y.

Sekino, J.D. Boyd, J.M. LeDue, T.H. Murphy,

Longitudinal monitoring of mesoscopic cortical

47

48

Hiromu Monai

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

activity in a mouse model of microinfarcts reveals

dissociations with behavioral and motor function,

J Cereb Blood Flow Metab. 39 (2019) 1486–1500.

https://doi.org/10.1177/0271678X18763428.

L.M. Brier, E.C. Landsness, A.Z. Snyder, P.W.

Wright, G.A. Baxter, A.Q. Bauer, J.-M. Lee, J.P.

Culver, Separability of calcium slow waves and

functional connectivity during wake, sleep, and

anesthesia, NPh. 6 (2019) 035002.

https://doi.org/10.1117/1.NPh.6.3.035002.

K.B. Clancy, I. Orsolic, T.D. Mrsic-Flogel,

Locomotion-dependent remapping of distributed

cortical networks, Nature Neuroscience. 22 (2019)

778–786.

https://doi.org/10.1038/s41593-019-0357-8.

J.V. Cramer, B. Gesierich, S. Roth, M. Dichgans,

M. Düring, A. Liesz, In vivo widefield calcium

imaging of the mouse cortex for analysis of

network connectivity in health and brain disease,

NeuroImage. 199 (2019) 570–584.

https://doi.org/10.1016/j.neuroimage.2019.06.014.

M. Li, S. Gui, Q. Huang, L. Shi, J. Lu, P. Li,

Density center-based fast clustering of widefield

fluorescence imaging of cortical mesoscale

functional connectivity and relation to structural

connectivity, Neurophotonics. 6 (2019) 045014.

https://doi.org/10.1117/1.NPh.6.4.045014.

N.J. Michelson, M.P. Vanni, T.H. Murphy,

Comparison between transgenic and AAVPHP.eB-mediated expression of GCaMP6s using

in vivo wide-field functional imaging of brain

activity, Neurophotonics. 6 (2019) 025014.

https://doi.org/10.1117/1.NPh.6.2.025014.

K. O’Hashi, K. Sohya, H. Matsuno, S. Tsuchimine,

H. Kunugi, Construction of the common cortical

space by spontaneous activity and its application

in the mouse cortex, Biochem. Biophys. Res.

Commun. 513 (2019) 869–874.

https://doi.org/10.1016/j.bbrc.2019.04.048.

A. Gilad, F. Helmchen, Spatiotemporal refinement

of signal flow through association cortex during

learning, Nature Communications. 11 (2020) 1–14.

https://doi.org/10.1038/s41467-020-15534-z.

V.A. Kalatsky, M.P. Stryker, New Paradigm for

Optical Imaging: Temporally Encoded Maps of

Intrinsic Signal, Neuron. 38 (2003) 529–545.

https://doi.org/10.1016/S0896-6273(03)00286-1.

A. Zepeda, C. Arias, F. Sengpiel, Optical imaging

of intrinsic signals: recent developments in the

methodology and its applications, Journal of

Neuroscience Methods. 136 (2004) 1–21.

https://doi.org/10.1016/j.jneumeth.2004.02.025.

S. Schuett, T. Bonhoeffer, M. Hübener, Mapping

Retinotopic Structure in Mouse Visual Cortex with

29.

30.

31.

32.

33.

34.

35.

36.

37.

NSR. O., Vol. 71

Optical Imaging, J. Neurosci. 22 (2002) 6549–

6559. https://doi.org/10.1523/JNEUROSCI.2215-06549.2002.

M. Tohmi, K. Takahashi, Y. Kubota, R. Hishida, K.

Shibuki, Transcranial flavoprotein fluorescence

imaging of mouse cortical activity and plasticity,

Journal of Neurochemistry. 109 (2009) 3–9.

https://doi.org/10.1111/j.1471-4159.2009.05926.x.

K. Takahashi, R. Hishida, Y. Kubota, M. Kudoh, S.

Takahashi, K. Shibuki, Transcranial fluorescence

imaging of auditory cortical plasticity regulated by

acoustic environments in mice, European Journal

of Neuroscience. 23 (2006) 1365–1376.

https://doi.org/10.1111/j.1460-9568.2006.04662.x.

I. Ferezou, F. Haiss, L.J. Gentet, R. Aronoff, B.

Weber,

C.C.H.

Petersen,

Spatiotemporal

Dynamics of Cortical Sensorimotor Integration in

Behaving Mice, Neuron. 56 (2007) 907–923.

https://doi.org/10.1016/j.neuron.2007.10.007.

M.H. Mohajerani, A.W. Chan, M. Mohsenvand, J.

LeDue, R. Liu, D.A. McVea, J.D. Boyd, Y.T. Wang,

M. Reimers, T.H. Murphy, Spontaneous cortical

activity alternates between motifs defined by

regional axonal projections, Nature Neuroscience.

16 (2013) 1426–1435.

https://doi.org/10.1038/nn.3499.

A. Stroh, H. Adelsberger, A. Groh, C. Rühlmann,

S. Fischer, A. Schierloh, K. Deisseroth, A.

Konnerth, Making Waves: Initiation and

Propagation of Corticothalamic Ca2+ Waves In

Vivo, Neuron. 77 (2013) 1136–1150.

https://doi.org/10.1016/j.neuron.2013.01.031.

T. Matsui, T. Murakami, K. Ohki, Transient

neuronal coactivations embedded in globally

propagating waves underlie resting-state functional

connectivity, PNAS. 113 (2016) 6556–6561.

https://doi.org/10.1073/pnas.1521299113.

Y. Ma, M.A. Shaik, S.H. Kim, M.G. Kozberg, D.N.

Thibodeaux, H.T. Zhao, H. Yu, E.M.C. Hillman,

Wide-field optical mapping of neural activity and

brain haemodynamics: considerations and novel

approaches, Philosophical Transactions of the

Royal Society B: Biological Sciences. 371 (2016)

20150360.

https://doi.org/10.1098/rstb.2015.0360.

T.-W. Chen, N. Li, K. Daie, K. Svoboda, A Map of

Anticipatory Activity in Mouse Motor Cortex,

Neuron. 94 (2017) 866-879.e4.

https://doi.org/10.1016/j.neuron.2017.05.005.

L.F. Rossi, R.C. Wykes, D.M. Kullmann, M.

Carandini, Focal cortical seizures start as standing

waves and propagate respecting homotopic

connectivity, Nature Communications. 8 (2017)

1–11.

September 2020

Transcranial Cortex-Wide Fluorescence Imaging through a Fully Intact Skull, as a Powerful

Tool for Functional Mapping: Less Invasive Macroscopic Imaging of Cortical Ca2+ Dynamics

https://doi.org/10.1038/s41467-017-00159-6.

38. M. Carandini, D. Shimaoka, L.F. Rossi, T.K. Sato,

A. Benucci, T. Knöpfel, Imaging the Awake Visual

Cortex with a Genetically Encoded Voltage

Indicator, J. Neurosci. 35 (2015) 53–63.

https://doi.org/10.1523/JNEUROSCI.0594-14.2015.

39. M. Ohkura, T. Sasaki, J. Sadakari, K. GengyoAndo, Y. Kagawa-Nagamura, C. Kobayashi, Y.

Ikegaya, J. Nakai, Genetically encoded green

fluorescent Ca2+ indicators with improved

detectability for neuronal Ca2+ signals., PloS One.

7 (2012) e51286.

https://doi.org/10.1371/journal.pone.0051286.

40. T. Mishima, T. Nagai, K. Yahagi, S. Akther, Y. Oe,

H. Monai, S. Kohsaka, H. Hirase, Transcranial

Direct Current Stimulation (tDCS) Induces

Adrenergic

Receptor-Dependent

Microglial

Morphological Changes in Mice, ENeuro. 6 (2019).

https://doi.org/10.1523/ENEURO.0204-19.2019.

41. L. de Vivo, M. Melone, J.D. Rothstein, F. Conti,

GLT-1 Promoter Activity in Astrocytes and Neurons

of Mouse Hippocampus and Somatic Sensory

Cortex., Frontiers in Neuroanatomy. 3 (2010) 31.

https://doi.org/10.3389/neuro.05.031.2009.

42. A.S. Thrane, V.R. Thrane, D. Zeppenfeld, N. Lou,

Q. Xu, E.A. Nagelhus, M. Nedergaard, V. Rangroo

Thrane, General anesthesia selectively disrupts

astrocyte calcium signaling in the awake mouse

cortex, Proc Natl Acad Sci U S A. 109 (2012)

18974–18979.

https://doi.org/1209448109 [pii] 10.1073/pnas.

1209448109.

43. D.H. Lim, M.H. Mohajerani, J. LeDue, J. Boyd, S.

Chen, T.H. Murphy, In vivo Large-Scale Cortical

Mapping Using Channelrhodopsin-2 Stimulation

in Transgenic Mice Reveals Asymmetric and

Reciprocal Relationships between Cortical Areas,

Front. Neural Circuits. 6 (2012).

https://doi.org/10.3389/fncir.2012.00011.

44. I.R. Winship, T.H. Murphy, In Vivo Calcium

Imaging Reveals Functional Rewiring of Single

Somatosensory Neurons after Stroke, J. Neurosci.

28 (2008) 6592–6606.

https://doi.org/10.1523/JNEUROSCI.0622-08.2008.

45. O.G.S. Ayling, T.C. Harrison, J.D. Boyd, A.

Goroshkov, T.H. Murphy, Automated light-based

mapping of motor cortex by photoactivation of

channelrhodopsin-2 transgenic mice, Nature

Methods. 6 (2009) 219–224.

https://doi.org/10.1038/nmeth.1303.

46. R. Hira, N. Honkura, J. Noguchi, Y. Maruyama,

G.J. Augustine, H. Kasai, M. Matsuzaki,

Transcranial

optogenetic

stimulation

for

functional mapping of the motor cortex, Journal of

47.

48.

49.

50.

51.

52.

53.

Neuroscience Methods. 179 (2009) 258–263.

https://doi.org/10.1016/j.jneumeth.2009.02.001.

K.L. Bernardo, J.S. McCasland, T.A. Woolsey,

R.N. Strominger, Local intra- and interlaminar

connections in mouse barrel cortex, Journal of

Comparative Neurology. 291 (1990) 231–255.

https://doi.org/10.1002/cne.902910207.

D.J. Margolis, H. Lütcke, K. Schulz, F. Haiss, B.

Weber, S. Kügler, M.T. Hasan, F. Helmchen,

Reorganization of cortical population activity

imaged throughout long-term sensory deprivation,

Nature Neuroscience. 15 (2012) 1539–1546.

https://doi.org/10.1038/nn.3240.

J. Nakatani, K. Tamada, F. Hatanaka, S. Ise, H.

Ohta, K. Inoue, S. Tomonaga, Y. Watanabe, Y.J.

Chung, R. Banerjee, K. Iwamoto, T. Kato, M.

Okazawa, K. Yamauchi, K. Tanda, K. Takao, T.

Miyakawa, A. Bradley, T. Takumi, Abnormal

Behavior in a Chromosome- Engineered Mouse

Model for Human 15q11-13 Duplication Seen in

Autism, Cell. 137 (2009) 1235–1246.

https://doi.org/10.1016/j.cell.2009.04.024.

M. Isshiki, S. Tanaka, T. Kuriu, K. Tabuchi, T.

Takumi, S. Okabe, Enhanced synapse remodelling

as a common phenotype in mouse models of

autism, Nat Commun. 5 (2014) 4742.

https://doi.org/10.1038/ncomms5742.

C. Piochon, A.D. Kloth, G. Grasselli, H.K. Titley,

H. Nakayama, K. Hashimoto, V. Wan, D.H.

Simmons, T. Eissa, J. Nakatani, A. Cherskov, T.

Miyazaki, M. Watanabe, T. Takumi, M. Kano,

S.S.-H. Wang, C. Hansel, Cerebellar plasticity and

motor learning deficits in a copy-number variation

mouse model of autism, Nature Communications.

5 (2014) 1–13.

https://doi.org/10.1038/ncomms6586.

J.T. Porter, K.D. McCarthy, Astrocytic

neurotransmitter receptors in situ and in vivo, Prog

Neurobiol. 51 (1997) 439–455.

H. Monai, H. Hirase, Astrocytes as a target of

transcranial direct current stimulation (tDCS) to

treat depression, Neuroscience Research. 126

(2018) 15–21.

https://doi.org/10.1016/j.neures.2017.08.012.

Acknowledgment

This work was supported by KAKENHI grants

(18K14859, 20K15895) and the TERUMO life science

foundation. The author thanks Dr. Hajime Hirase for

the supervise. The author also thanks members of the

laboratory for their support. The author declares no

competing financial interests

49

...

参考文献をもっと見る