リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「New Horizons in Electromagnetics in Medicine and Biology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

New Horizons in Electromagnetics in Medicine and Biology

Ueno, Shoogo 東京大学

2022.08.25

概要

Forty years of studies on bioelectromagnetics, in our laboratory, are presented to view new horizons in electromagnetics in medicine and biology. The several topics are reviewed and discussed. The review includes transcranial magnetic stimulation (TMS) of the human brain, imaging of electrical information in the brain based on magnetic resonance imaging (MRI) such as impedance MRI and current MRI, cancer therapy using magnetizable beads and pulsed magnetic fields, magnetic control of cell orientation and cell growth, and effects of radio frequency electromagnetic fields on iron ion release, and uptake from and into iron cage proteins, ferritins. These techniques are leading medicine and biology into a new horizon through the novel applications of magnetism and electromagnetics.

この論文で使われている画像

参考文献

Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, i, 1325–1326. Bartzokis, G., Tishler, T. A., Shin, I.-S., Lu, P. H., & Cummings, J. L.,(2004). Brain ferritin iron as a risk factor for age at onset in neurodegener-ative diseases. Annals of the New York Academy of Sciences, 1012, 224–236. https://doi.org/10.1196/annals.1306.019

Cespedes, O., Inomoto, O., Kai, S., Nibu, Y., Yamaguchi, T., Sakamoto, N., et al. (2010). Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins. Bioelectromagnetics, 31, 311–317.

Céspedes, O., & Ueno, S. (2009). Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics, 30, 336–342. https://doi.org/10.1002/bem.20488

Cespedes, O., & Ueno, S. (2015). Effects of radio frequency magnetic fields on iron release and uptake from and into cage proteins. In S. Ueno, & M. Sekino, (Eds.), Biomagnetics: Principles and applications of biomagnetic stimulation and imaging (Chapter 8, pp. 219–257). CRC Press Taylor & Francis Group.

Crowther, L. J., Marketos, P., Williams, P. I., Melikhov, Y., & Jiles, D. C. (2011). Transcranial magnetic stimulation: Improved coil design for deep brain investigation. Journal of Applied Physics, 109, 07B314. https://doi.org/10.1063/1.3563076

d’Arsonval, J. A. (1896). Dispositifs pour la mesure des courants alternatifs de toutes frequences. Comptes Rendus de l'Académie des Sciences, 48, 450–451.

Frei, H. H. (Ed.), (1970). Introduction to the symposium on application of magnetism and bioengineering. IEEE Transactions on Magnetics, MAG 6, 307–375.

Eguchi, Y., Ohtori, S., Sekino, M., & Ueno, S. (2015). Effectiveness of magnetically aligned collagen for neural regeneration in vitro and in vivo.Bioelectromagnetics, 36, 233–243. https://doi.org/10.1002/bem.21896

Everett, J., Céspedes, E., Shelford, L. R., Exley, C., Collingwood, J. F., Dobson, J., et al. (2014). Evidence of redox-active iron formation follow- ing aggregation of ferrihydrite and the Alzheimer's disease peptide β-amyloid. Inorganic Chemistry, 53, 2803–2809. https://doi.org/10.1021/ ic402406g

Fujiki, M., & Stewart, O. (1997). High frequency transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia. Journal of Neurosurgery, 99, 1063–1069.

Gilbert, W. (1600). De Magnete. Translation to English by Mottelay (1958). Dover. https://doi.org/10.5479/sil.113709.39088016899940 Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H.-J., et al. (2017). Noninvasive deep brain stimulation via tem-porally interfering electric fields. Cell, 169, 1029–1041. https://doi.org/10.1016/j.cell.2017.05.024

Hatada, T., Sekino, M., & Ueno, S. (2005). Finite element method-based calculation of the theoretical limit of sensitivity for detecting weak mag- netic fields in the human brain using magnetic-resonance imaging. Journal of Applied Physics, 97, 10E109. https://doi.org/10.1063/1.1861553 Kamei, H., Iramina, K., Yoshikawa, K., & Ueno, S. (1999). Neuronal current distribution imaging using magnetic resonance. IEEE Transactions on Magnetics, 35, 4109–4111. https://doi.org/10.1109/20.800771

Kanwar, P., & Kowdley, K. V. (2013). Diagnosis and treatment of hereditary hemochromatosis: An update. Expert Review of Gastroenterology & Hepatology, 7(6), 517–530. www.expert-reviews.com. https://doi.org/10.1586/17474124.2013.816114

Kotani, H., Kawaguchi, H., Shimokawa, T., Iwasaka, M., Ueno, S., Ozawa, H., et al. (2002). Strong static magnetic field stimulates bone forma- tion to a definite orientation in vivo and in vitro. Journal of Bone and Mineral Research, 17, 1814–1821.

Lauterbur, P. C. (1973). Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 242(5394), 190–191. https://doi.org/10.1038/242190a0

Lee, J.-S., Xia, D., Jerschow, A., & Regatta, R. R. (2015). In vitro study of endogenous CEST agents at 3 T and 7 T. Contrast Media and Molec- ular Imaging, 11(1), 1–26. https://doi.org/10.1002/cmmi.1652

Lu, M., & Ueno, S. (2015). Computational study toward deep transcranial magnetic stimulation using coaxial circular coils. IEEE Transactions on Biomedical Engineering, 62(12), 2911–2919. https://doi.org/10.1109/tbme.2015.2452261

Lu, M., & Ueno, S. (2017). Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.PLoS One, 12(6), 1–12.e0178422.

Mansfield, P. (1977). Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics, 10, L55–L58. https://doi. org/10.1088/0022-3719/10/3/004

Müller, M., Toschi, N., Kresse, A. E., Post, A., & Keck, M. E. (2000). Long-term repetitive transcranial magnetic stimulation increases the ex- pression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology, 23, 205–215. https://doi.org/10.1016/s0893-133x(00)00099-3

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proceedings of the National Academy of Sciences, 87(24), 9868–9872. https://doi.org/10.1073/pnas.87.24.9868

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89(13), 5951–5955. https://doi.org/10.1073/pnas.89.13.5951

Ogiue-Ikeda, M., Kawato, S., & Ueno, S. (2003). The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hip- pocampus depends on stimulus intensity. Brain Research, 993, 222–226. https://doi.org/10.1016/j.brainres.2003.09.009

Ogiue-Ikeda, M., Kawato, S., & Ueno, S. (2005). Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Research, 1037, 7–11. https://doi.org/10.1016/j.brainres.2004.10.063

Ogiue-Ikeda, M., Sato, Y., & Ueno, S. (2003). A new method to destruct targeted cells using magnetizable beads and pulsed magnetic force. IEEE Transactions on Nanobioscience, 2(4), 262–265. https://doi.org/10.1109/tnb.2003.820276

Roth, Y., Zangen, A., & Hallett, M. (2002). A coil design for transcranial magnetic stimulation of deep brain regions. Journal of Clinical Neuro- physiology, 19, 361–370. https://doi.org/10.1097/00004691-200208000-00008

Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., et al. (2001). Redox-active iron mediates amyloid-β toxicity. Free Radical Biology and Medicine, 30, 447–450. https://doi.org/10.1016/s0891-5849(00)00494-9

Sekino, M., Inoue, Y., & Ueno, S. (2005). Magnetic resonance imaging of electrical conductivity in the human brain. IEEE Transactions on Magnetics, 41, 4203–4205. https://doi.org/10.1109/tmag.2005.854804

Sekino, M., Ohsaki, H., Yamaguchi-Sekino, S., Iriguchi, N., & Ueno, S. (2009). Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI. Bioelectromagnetics, 30, 489–499. https://doi.org/10.1002/bem.20505

Sekino, M., Ohsaki, H., Yamaguchi-Sekino, S., & Ueno, S. (2009). Toward detection of transient changes in magnetic-resonance signal intensi- ty arising from neuronal electrical activities. IEEE Transactions on Magnetics, 45, 4841–4844. https://doi.org/10.1109/tmag.2009.2022954 Stefanini, S., Cavallo, S., Wang, C.-Q., Tataseo, P., Vecchini, P., Giartosio, A., & Chiancone, E. (1996). Thermal stability of horse spleen apo-ferritin and human recombinant H apoferritin. Archives of Biochemistry and Biophysics, 325, 58–64. https://doi.org/10.1006/abbi.1996.0007 Stejskal, E. O., & Tanner, J. E. (1965). Use of spin echo in pulsed magnetic field gradient to study anisotropic, restricted diffusion and flow. The Journal of Chemical Physics, 43, 3579–3603. https://doi.org/10.1063/1.1696526

Suppiah, S., Didier, M.-A., & Vinjamuri, S. (2019). The who, when, why, and how of PET amyloid imaging in management of Alzheimer's dis- ease—Review of literature and interesting images. Diagnostics, 9(2), 65–24. https://doi.org/10.3390/diagnostics9020065

Togao, O., Yoshiura, T., Keupp, J., Hiwatashi, A., Yamashita, K., Kikuchi, K., et al. (2014). Amide proton transfer imaging of adult diffuse glio- mas: Correlation with histopathological grades. Neuro-Oncology, 16(3), 441–448. https://doi.org/10.1093/neuonc/not158

Torbet, J., Freyssinet, J.-M., & Hudry-Clergeon, G. (1981). Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature, 289, 91–93. https://doi.org/10.1038/289091a0

Ueno, S. (1994). Focal and vectorial magnetic stimulation of the human brain. In S. Ueno, (Ed.), Biomagnetic stimulation (pp. 29–47). Plenum Press. https://doi.org/10.1007/978-1-4757-9507-3_3

Ueno, S. (2012). Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics, 33(1), 3–22. https://doi.org/10.1002/bem.20714

Ueno, S. (2015). Introduction. In S. Ueno, & M. Sekino, (Eds.), Biomagnetics: Principles and applications of biomagnetic stimulation and imag- ing (Chapter 1, pp. 1–22). CRC Press Taylor & Francis Group. https://doi.org/10.1201/b18831-2

Ueno, S. (2020). Bioimaging: Imaging by light and electromagnetics in medicine and biology (pp. 1–268). CRC Press Taylor & Francis Group. Ueno, S., & Fujiki, M. (2007). Magnetic stimulation. In W. Andra, & H. Nowak (Eds.), Magnetism in medicine: A handbook (2nd ed. Chapter 4.4, pp. 511–528). Wiley-VCH verlag GmbH & KGaA.

Ueno, S., & Iriguchi, N. (1998). Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging. Journal of Applied Physics, 83, 6450–6452. https://doi.org/10.1063/1.367599

Ueno, S., & Iwasaka, M. (1994). Properties of diamagnetic fluid in high gradient magnetic fields. Journal of Applied Physics, 75, 7177–7179. https://doi.org/10.1063/1.356686

Ueno, S., Matsuda, T., & Fujiki, M. (1990). Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain. IEEE Transactions on Magnetics, 26, 1539–1544. https://doi.org/10.1109/20.104438

Ueno, S., Tashiro, T., & Harada, K. (1988). Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. Journal of Applied Physics, 64, 5862–5864. https://doi.org/10.1063/1.342181

Van Zijl, P. C. M., & Yadav, N. N. (2011). Chemical exchange saturation transfer (CEST): What is in a name and what isn't? Magnetic Resonance in Medicine, 65(4), 927–948. https://doi.org/10.1002/mrm.22761

Walker, E. M., Jr, Wolfe, M. D., Norton, M. N., Walker, S. M., & Jones, M. M. (1998). Hereditary hemochromatosis. Annals of Clinical and Laboratory Science, 28(5), 300–312.

Ward, K. M., Aletras, A. H., & Balaban, R. S. (2000). A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Journal of Magnetic Resonance, 143(1), 79–87. https://doi.org/10.1006/jmre.1999.1956

Yau, S.-T., Petsev, D. N., Thomas, B. R., & Vekilov, P. G. (2000). Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals. Journal of Molecular Biology, 303, 667–678. https://doi.org/10.1006/jmbi.2000.4171

Yoshiura, T. (2020). Chemical exchange saturation transfer and amide proton transfer imaging. In S. Ueno (Ed.), Bioimaging: Imag- ing by light and electromagnetics in medicine and biology (Chapter 5, pp. 101–120). CRC Press Taylor & Francis Group. https://doi. org/10.1201/9780429260971-5

Yukawa, Y., Iriguchi, N., & Ueno, S. (1999). Impedance magnetic resonance imaging with external AC field added to main static field. IEEE Transactions on Magnetics, 35, 4121–4123. https://doi.org/10.1109/20.800775

Zangen, A., Roth, Y., Voller, B., & Hallett, M. (2005). Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-coil. Clinical Neurophysiology, 116, 775–779. https://doi.org/10.1016/j.clinph.2004.11.008

Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain aging and neurodegenerative disorders. Nature Reviews Neuroscience, 5, 863–873. https://doi.org/10.1038/nrn1537

Zhou, J., Lal, B., Wilson, D. A., Laterra, J., & van Zijl, P. C. M. (2003). Amide proton transfer (APT) contrast for imaging of brain tumors. Mag- netic Resonance in Medicine, 50, 1120–1126. https://doi.org/10.1002/mrm.10651

参考文献をもっと見る