リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Creep Crack Growth Behavior during Hot Water Immersion of an Epoxy Adhesive Using a Spring-Loaded Double Cantilever Beam Test Method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Creep Crack Growth Behavior during Hot Water Immersion of an Epoxy Adhesive Using a Spring-Loaded Double Cantilever Beam Test Method

Kota Nakamura Yu Sekiguchi Kazumasa Shimamoto Keiji Houjou Haruhisa Akiyama Chiaki Sato 東京工業大学 DOI:https://doi.org/10.3390/ma16020607

2023.01.08

概要

Double cantilever beam (DCB) tests were conducted by immersing the specimens in temperature-controlled water while applying a creep load using a spring. By introducing a data reduction scheme to the spring-loaded DCB test method, it was confirmed that only a single parameter measurement was sufficient to calculate the energy release rate (ERR). Aluminum alloy substrates bonded with an epoxy adhesive were used, and DCB tests were performed by changing the initial load values, spring constants, and immersion temperatures for two types of surface treatment. The initial applied load and spring constant had no effect on the ERR threshold. In contrast, the threshold decreased with the increasing immersion temperature, but even in the worst case, it was 15% of the critical ERR in the static tests. Using the creep crack growth relationship, it was revealed that there were three phases of creep immersion crack growth in the adhesive joints, and each phase was affected by the temperature. The spring-loaded DCB test method has great potential for investigating the combined effects of creep, moisture, and temperature, and this study has demonstrated the validity of the test method. The long-term durability of adhesive joints becomes increasingly important, and this test method is expected to become widespread.

参考文献

1. Viana, G.; Costa, M.; Banea, M.D.; da Silva, L.F.M. A review on the temperature and moisture degradation of adhesive joints. Proc. Inst. Mech. Eng. L 2017, 231, 488–501. [CrossRef]

2. Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Effect of cyclic moisture absorption/desorption on the strength of epoxy adhesive joints and moisture diffusion coefficient. J. Adhes. 2022, 98, 1535–1551. [CrossRef]

3. Han, X.; Crocombe, A.D.; Anwar, S.N.R.; Hu, P.; Li, W.D. The effect of a hot-wet environment on adhesively bonded joints under a sustained load. J. Adhes. 2014, 90, 420–436. [CrossRef]

4. Shimamoto, K.; Akiyama, H. Estimating the mechanical residual strength from IR spectra using machine learning for degraded adhesives. J. Adhes. 2022, 98, 2423–2445. [CrossRef]

5. Borges, C.S.P.; Marques, E.A.S.; Carbas, R.J.C.; Ueffing, C.; Weißgraeber, P.; da Silva, L.F.M. Review on the effect of moisture and contamination on the interfacial properties of adhesive joints. Proc. Inst. Mech. Eng. C 2021, 235, 527–549. [CrossRef]

6. Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H.; Sato, C. Accelerated test method for water resistance of adhesive joints by interfacial cutting of open-faced specimens. J. Adhes. 2021, 97, 1255–1270. [CrossRef]

7. Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H.; Sato, C. Degradation of epoxy adhesive containing dicyandiamide and carboxyl-terminated butadiene acrylonitrile rubber due to water with open-faced specimens. J. Adhes. 2021, 97, 1388–1403. [CrossRef]

8. Jhin, G.; Azari, S.; Ameli, A.; Datla, N.V.; Papini, M.; Spelt, J.K. Crack growth rate and crack path in adhesively bonded joints: Comparison of creep, fatigue and fracture. Int. J. Adhes. Adhes. 2013, 46, 74–84. [CrossRef]

9. Pascoe, J.A.; Alderliesten, R.C.; Benedictus, R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—A critical review. Eng. Fract. Mech. 2013, 112–113, 72–96. [CrossRef]

10. Sekiguchi, Y.; Sato, C. Effect of bond-line thickness on fatigue crack growth of structural acrylic adhesive joints. Materials 2021, 14, 1723. [CrossRef]

11. Costa, M.; Viana, G.; da Silva, L.F.M.; Campilho, R.D.S.G. Environmental effect on the fatigue degradation of adhesive joints: A review. J. Adhes. 2017, 93, 127–146. [CrossRef]

12. Datla, N.V.; Ameli, A.; Azari, S.; Papini, M.; Spelt, J.K. Effects of hygrothermal aging on the fatigue behavior of two toughened epoxy adhesives. Eng. Fract. Mech. 2012, 79, 61–77. [CrossRef]

13. Wang, M.; Liu, A.; Liu, Z.; Wang, P.-C. Effect of hot humid environmental exposure on fatigue crack growth of adhesive-bonded aluminum A356 joints. Int. J. Adhes. Adhes. 2013, 40, 1–10. [CrossRef]

14. Sugiman, S.; Crocombe, A.D.; Aschroft, I.A. The fatigue response of environmentally degraded adhesively bonded aluminium structures. Int. J. Adhes. Adhes. 2013, 41, 80–91. [CrossRef]

15. Houjou, K.; Sekiguchi, Y.; Shimamoto, K.; Akiyama, H.; Sato, C. Energy release rate and crack propagation rate behaviour of moisture-deteriorated epoxy adhesives through the double cantilever beam method. J. Adhes. 2022. Online First version. [CrossRef]

16. Han, X.; Crocombe, A.D.; Anwar, S.N.R.; Hu, P. The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment. Int. J. Adhes. Adhes. 2014, 55, 1–11. [CrossRef]

17. Manterola, J.; Zurbitu, J.; Renart, J.; Turon, A.; Urresti, I. Durability study of flexible bonded joints: The effect of sustained loads in mode I fracture tests. Polym. Test. 2020, 88, 106570. [CrossRef]

18. de Zeeuw, C.; de Freitas, S.T.; Zarouchas, D.; Schilling, M.; Fernandes, R.L.; Portella, P.D.; Niebergall, U. Creep behaviour of steel bonded joints under hygrothermal conditions. Int. J. Adhes. Adhes. 2019, 91, 54–63. [CrossRef]

19. Tan, W.; Na, J.-X.; Zhou, Z.-F. Effect of temperature and humidity on the creep and aging behavior of adhesive joints under static loads. J. Adhes. 2022. Online First version. [CrossRef]

20. ASTM D2919-01; Standard Test Method for Determining Durability of Adhesive Joints Stressed in Shear by Tension Loading. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]

21. Ebnesajjad, S. Chapter 10—Durability of adhesive bonds. In Adhesive Technology Handbook, 2nd ed.; William Andrew Publishing: Norwich, NY, USA, 2009. [CrossRef]

22. Hayashibara, H.; Iwata, T.; Ando, T.; Murakami, C.; Mori, E.; Kobayashi, I. Degradation of structural adhesive bonding joints on ship exposure decks. J. Mar. Sci. Technol. 2020, 25, 510–519. [CrossRef]

23. ASTM D3433-99; Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]

24. ISO 25217:2009; Adhesives–Determination of the Mode I Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens. International Organization for Standardization: Geneva, Switzerland, 2009.

25. Sun, F.; Blackman, B.R.K. Using digital image correlation to automate the measurement of crack length and fracture energy in the mode I testing of structural adhesive joints. Eng. Fract. Mech. 2021, 255, 107957. [CrossRef]

26. Terasaki, N.; Fujio, Y.; Sakata, Y.; Horiuchi, S.; Akiyama, H. Visualization of crack propagation for assisting double cantilever beam test through mechanoluminescence. J. Adhes. 2018, 94, 867–879. [CrossRef]

27. de Moura, M.F.S.F.; Morais, J.J.L.; Dourado, N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Eng. Fract. Mech. 2008, 75, 3852–3865. [CrossRef]

28. ISO 10354:1992; Adhesives–Characterization of Durability of Structural-Adhesive-Bonded Assemblies–Wedge Rupture Test. International Organization for Standardization: Geneva, Switzerland, 1992.

29. ASTM D3762-03; Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test). ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]

30. Cognard, J. The mechanics of the wedge test. J. Adhes. 1986, 20, 1–13. [CrossRef]

31. Adams, R.D.; Cowap, J.W.; Farquharson, G.; Margary, G.M.; Vaughn, D. The relative merits of the Boeing wedge test and the double cantilever beam test for assessing the durability of adhesively bonded joints, with particular reference to the use of fracture mechanics. Int. J. Adhes. Adhes. 2009, 29, 609–620. [CrossRef]

32. Sargent, J.P. Durability studies for aerospace applications using peel and wedge tests. Int. J. Adhes. Adhes. 2005, 25, 247–256. [CrossRef]

33. Yu, S.; Tong, M.N.; Critchlow, G. Wedge test of carbon-nanotube-reinforced epoxy adhesive joints. J. Appl. Polym. Sci. 2009, 111, 2957–2962. [CrossRef]

34. Kempe, M.; Wohlgemuth, J.; Miller, D.; Postak, L.; Booth, D.; Phillips, N. Investigation of a wedge adhesion test for edge seals. In Proceedings of the Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, San Diego, CA, USA, 26 September 2016; Volume 9938, p. 993803. [CrossRef]

35. van Dam, J.P.B.; Abrahami, S.T.; Yilmaz, A.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. Int. J. Adhes. Adhes. 2020, 96, 102450. [CrossRef]

36. Budzik, M.; Jumel, J.; Imieli ´nska, K.; Shanahan, M.E.R. Accurate and continuous adhesive fracture energy determination using an instrumented wedge test. Int. J. Adhes. Adhes. 2009, 29, 694–701. [CrossRef]

37. Budzik, M.K.; Jumel, J.; Shanahan, M.E.R. An in situ technique for the assessment of adhesive properties of a joint under load. Int. J. Fract. 2011, 171, 111–124. [CrossRef]

38. Dillard, D.A.; Liechti, K.M.; Lefebvre, D.R.; Lin, C.; Thornton, J.S.; Brinson, H.F. Development of Alternative Techniques for Measuring the Fracture Toughness of Rubber-to-Metal Bonds in Harsh Environments. Adhesively Bonded Joints: Testing, Analysis and Design; ASTM STP; Johnson, W.S., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1988; Volume 981, pp. 83–97. [CrossRef]

39. Hasegawa, K.; Crocombe, A.D.; Coppuck, F.; Jewel, D.; Maher, S. Characterising bonded joints with a thick and flexible adhesive layer—Part 1: Fracture testing and behaviour. Int. J. Adhes. Adhes. 2015, 63, 124–131. [CrossRef]

40. Sekiguchi, Y.; Katano, M.; Sato, C. Experimental study of the mode I adhesive fracture energy in DCB specimens bonded with a polyurethane adhesive. J. Adhes. 2017, 93, 235–255. [CrossRef]

41. Gheibi, M.R.; Shojaeefard, M.H.; Googarchin, H.S. A comparative study on the fracture energy determination theories for an automotive structural adhesive: Experimental and numerical investigation. Eng. Fract. Mech. 2019, 212, 13–27. [CrossRef]

42. Plausinis, D.; Spelt, J.K. Designing for time-dependent crack growth in adhesive joints. Int. J. Adhes. Adhes. 1995, 15, 143–154. [CrossRef]

43. Kook, S.-Y.; Dauskardt, R.H. Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 2002, 91, 1293–1303. [CrossRef]

44. Lane, M.W.; Liu, X.H.; Shaw, T.M. Environmental effects on cracking and delamination of dielectric films. IEEE Trans. Device Mater. Reliab. 2004, 4, 142–147. [CrossRef]

45. Tan, T.; Rahbar, N.; Buono, A.; Wheeler, G.; Soboyejo, W. Sub-critical crack growth in adhesive/marble interfaces. Mater. Sci. Eng. A 2011, 528, 3697–3704. [CrossRef]

46. Birringer, R.P.; Shaviv, R.; Besser, P.R.; Dauskardt, R.H. Environmentally assisted debonding of copper/barrier interfaces. Acta Mater. 2012, 60, 2219–2228. [CrossRef]

47. Bosco, N.; Tracy, J.; Dauskardt, R. Environmental influence on module delamination rate. IEEE J. Photovolt. 2019, 9, 469–475. [CrossRef]

48. Springer, M.; Bosco, N. Environmental influence on cracking and debonding of electrically conductive adhesives. Eng. Fract. Mech. 2021, 241, 107398. [CrossRef]

49. Sekiguchi, Y.; Houjou, K.; Shimamoto, K.; Sato, C. Two-parameter analysis of fatigue crack growth behavior in structural acrylic adhesive joints. Fatigue Fract. Eng. Mater. Struct. 2022. Online First version. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る