リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elastic critical local buckling stress in cold-formed lipped channel and hat sections under uniform compression」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elastic critical local buckling stress in cold-formed lipped channel and hat sections under uniform compression

三井 和也 五十嵐 規矩夫 小橋 知季 Kazuya Mitsui Kikuo Ikarashi Tomoki Kobashi 東京工業大学 DOI:https://doi.org/10.1016/j.tws.2023.111064

2023.08.18

概要

Cold-formed open sections (CFOSs) such as thin-walled lipped channel and hat sections can deliver high performance with a small quantity
of steel and are rapidly becoming popular owing to their ease of fabrication. The utilization of high-strength steel and development of low-cost
products in recent manufacturing processes has further improved the
structural performance of CFOSs. However, CFOSs are characterized by
low thickness and are therefore prone to multiple patterns of instability
phenomena, such as local, distortional, and flexural buckling at low
stress levels. The values of the buckling load vary in a complicated
manner depending on the cross-sectional geometry. Accordingly, to
maximize the performance, the member design must be based on a
design formula that can accurately calculate the buckling load. Therefore, since 2007, the North American Specifications for the Design
of Cold-Formed Steel Structures [1] have suggested a computational
design method known as the direct strength method (DSM) [2] to
manage such instability problems. The DSM allows the use of relatively
simple-to-handle tools, such as the finite strip method (FSM) [3],
which can analyze the elastic critical stresses of local, distortional, and
flexural buckling. ...

この論文で使われている画像

参考文献

[1] North American Specification (NAS) for the Design of Cold-Formed Steel Structural Members - AISI S100-12-C, American Iron and Steel Institute (AISI),

Washington, D.C., 2020.

[2] B.W. Schafer, Review: The direct strength method of cold-formed steel member

design, J. Construct. Steel Res. 64 (7–8) (2008) 766–778.

[3] S. Ádány, B.W. Schafer, A full modal decomposition of thin-walled, singlebranched open cross-section members via the constrained finite strip method,

J. Construct. Steel Res. 64 (1) (2008) 12–29.

[4] Cold-Formed Steel Structures AS/NZS 4600:2018, Standards Australia, Sydney,

Australia, 2005.

(A.9)

(A.10)

10

K. Mitsui, K. Ikarashi, T. Kobashi et al.

Thin-Walled Structures 191 (2023) 111064

[16] V. Piluso, A. Pisapia, G. Rizzano, Local buckling of aluminium channels under

uniform compression: Theoretical analysis and experimental tests, Thin-walled

Struct. 179 (2022) 109511.

[17] H.T. Nguyen, S.E. Kim, Buckling of composite columns of lipped-channel and

hat sections with web stiffener, Thin-walled Struct. 47 (2009) 1149–1160.

[18] Y.B. Kwon, B.S. Kim, G.J. Hancock, Compression tests of high strength coldformed steel channels with buckling interaction, J. Constr. Steel Res. 65 (2)

(2009) 278–289.

[19] S. Jin, Z. Li, T. Gao, F. Huang, D. Gan, R. Cheng, Constrained shell finite

element method of modal buckling analysis for thin-walled members with curved

cross-sections, Eng. Struct. 240 (1) (2021) 112281.

[20] M.V.A. Kumar, V. Kalyanaraman, Design strength of locally buckling stub-lipped

channel columns, J. Struct. Eng. 138 (11) (2012) 1291–1299.

[21] S. Li, O. Zhao, Local buckling and capacity of press-braked ferritic stainless steel

channel sections under minor-axis combined loading, Thin-walled Struct. 178

(2022) 109507.

[22] Y.B. Kwon, G.J. Hancock, Tests of cold-formed channels with local and

distortional buckling, J. Struct. Eng. 118 (7) (1992) 1786–1803.

[23] H. Debski, A. Teter, T. Kubiak, S. Samborski, Local buckling, post-buckling

and collapse of thin-walled channel section composite columns subjected to

quasi-static compression, Thin-Walled Struct. 136 (2016) 593–601.

[24] L. Huang, W. Yang, T. Shi, J. Qu, Local and distortional interaction buckling

of cold-formed thin-walled high strength lipped channel columns, Int. J. Steel

Struct. 21 (2021) 244–259.

[25] S.P. Timosenko, J.M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill

Book Inc., New York, 1961.

[26] B.W. Schafer, CUFSM5.04-Finite Strip Buckling Analysis of Thin-Walled Members,

Baltimore, Department of Civil Engineering, Johns Hopkins University, U.S.A.,

2020, http://www.ce.jhu.edu/bschafer/cufsm/.

[27] MSC Software Corporation, Marc Version 2020 Volume A–D, MSC Software

Corporation, 2021.

[5] Guide for Designing Cold-Formed Steel Structures, 2nd ed., Gihodo Shuppan Co.,

Ltd., Tokyo, Japan, 2014.

[6] B.W. Schafer, T. Peköz, Laterally braced cold-formed steel flexural members with

edge stiffened flanges, ASCE J. Struct. Eng. 125 (2) (1999) 118–127.

[7] B.W. Schafer, Local, distortional, and Euler buckling of thin-walled columns,

ASCE J. Struct. Eng. 128 (3) (2002) 289–299.

[8] T. Kobashi, K. Ikarashi, N. Shimizu, Elastic local buckling strength and maximum

strength of cold formed steel members with different plate width on adjacent

plate elements, Jpn. Archit. Rev. 2 (4) (2019) 465–476.

[9] T. Kobashi, K. Ikarashi, N. Shimizu, Elastic local buckling strength and maximum

strength of rectangular section members which were loaded compression and

bending, J. Struct. Constr. Eng. (Trans. AIJ) 84 (755) (2019) 97–107, (In

Japanese).

[10] C. Yu, B.W. Schafer, Stress gradient effect on the buckling of thin plates, in:

17th International Specialty Conference on Cold-Formed Steel Structures, 2004,

pp. 47–69.

[11] Y. Kimura, S.M. Fujak, A. Suzuki, Elastic local buckling strength of I-beam

cantilevers subjected to bending moment and shear force based on flange–web

interaction, Thin-walled Struct. 162 (2021) 107633.

[12] K. Mitsui, K. Ikarashi, Buckling strength and behavior of elastic local buckling for

cold-formed channel member under compression, J. Struct. Constr. Eng. (Trans.

AIJ) 86 (790) (2021) 1685–1692, (In Japanese).

[13] G.C. de Salles, E. de M. Batista, D.C.T. Cardoso, A modal decomposition approach

for experimental buckling analysis of thin-walled lipped channel columns, Eng.

Struct. 256 (2022) 113979.

[14] Y. Lu, W. Li, T. Zhou, H. Wu, Novel local buckling formulae for cold-formed Csection columns considering end condition effect, Thin-walled Struct. 116 (2017)

265–276.

[15] T. Zhou, Y. Lu, W. Li, H. Wu, End condition effect on distortional buckling of

cold-formed steel columns with arbitrary length, Thin-walled Struct. 117 (2017)

282–293.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る