リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「熱活性型レトロトランスポゾンの転写制御解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

熱活性型レトロトランスポゾンの転写制御解析

野沢, 紘佑 北海道大学

2022.03.24

概要

DNA メチル化は、トランスポゾンの抑制やゲノムの整合性に重要な役割を果たしている。CHROMOMETHYLASE3 (CMT3)は、植物特異的な DNA メチル化酵素であり、CHG (H=A、T、 C)コンテクストにおける DNA メチル化を触媒する。私は、熱ストレスによるレトロトランスポゾン ONSEN の活性化に CMT3 が重要な役割を果たしていることを明らかにした。興味深いことに、CMT3 の機能喪失変異により、ONSEN の CHH メチル化が増加した。cmt2 およびcmt2 cmt3 変異体では CHH メチル化が大幅に減少し、ONSEN の転写量が増加したことから、CHH メチル化は CMT2 によって媒介されていることがわかった。さらに、cmt3 変異体では、野生型に比べて ONSEN 遺伝子座のクロマチンに CMT2 が多く結合しており、熱ストレス下でH3K9me2 が異所的に蓄積していることから、熱による ONSEN の活性化を防ぐためにH3K9me2 と CHH のメチル化が協調的に作用していることが示唆された。以上、本研究では、トランスポゾンのサイレンシングを妨げる CMT3 の新たな役割を明らかにするとともに、DNAメチル化酵素がストレス条件下でトランスポゾンの転写を制御する仕組みについて新たな知見を得た。

この論文で使われている画像

参考文献

1. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8: 272‒285.

2. Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 2018;19: 489‒506. doi:10.1038/s41580-018-0016-z

3. Du J, Zhong X, Bernatavichute Y V., Stroud H, Feng S, Caro E, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012;151: 167‒180. doi:10.1016/j.cell.2012.07.034

4. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol. 2014;21: 64‒72. doi:10.1038/nsmb.2735

5. Wendte JM, Zhang Y, Ji L, Shi X, Hazarika RR, Shahryary Y, et al. Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation. Elife. 2019;8: e47891. doi:10.7554/eLife.47891

6. Stroud H, Greenberg MVCC, Feng S, Bernatavichute Y V., Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152: 352‒364. doi:10.1016/j.cell.2012.10.054

7. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, et al. The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153: 193‒205. doi:10.1016/j.cell.2013.02.033

8. Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol. 2012;15: 503‒510.

9. Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. Curr Opin Plant Biol. 2015;27: 67‒76.

10. Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 2016;17: 209. doi:10.1186/s13059-016-1072-3

11. Cavrak V V., Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. How a Retrotransposon Exploits the Plantʼs Heat Stress Response for Its Activation. PLoS Genet. 2014;10: e1004115. doi:10.1371/journal.pgen.1004115

12. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472: 115‒119. doi:10.1038/nature09861

13. Ito H, Kim JM, Matsunaga W, Saze H, Matsui A, Endo TA, et al. A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. Sci Rep. 2016;6: 1‒12. doi:10.1038/srep23181

14. Masuda S, Nozawa K, Matsunaga W, Masuta Y, Kawabe A, Kato A, Ito, H. Characterization of a heat-activated retrotransposon in natural accessions of Arabidopsis thaliana. Genes Genet Syst 2017, 91 (6), 293-299. DOI: 10.1266/ggs.16-00045.

15. Nozawa K, Kawagishi Y, Kawabe A, Sato M, Masuta Y, Kato A, Ito H. Epigenetic Regulation of a Heat-Activated Retrotransposon in Cruciferous Vegetables. Epigenomes 2017;1: 7. doi: 10.3390/epigenomes1010007.

16. Lisch D. Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009;60: 43‒66.

17. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature. 2009;461: 1130‒1134.

18. Charng Y, Liu H, Liu N, Chi W, Wang C, Chang S, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 2007;143: 251‒262.

19. LIU H, LIAO H, CHARNG Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 2011;34: 738‒751.

20. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics. 2011;286: 321‒ 332.

21. Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X, et al. A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. J Plant Res. 2017;130: 349‒363. doi:10.1007/s10265-016-0900-6

22. Matsunaga W, Ohama N, Tanabe N, Masuta Y, Masuda S, Mitani N, et al. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. Front Plant Sci. 2015;6: 48.

23. Masuda S, Nozawa K, Matsunaga W, Masuta Y, Kawabe A, Kato A, et al. Characterization of a heat-activated retrotransposon in natural accessions of Arabidopsis thaliana. Genes Genet Syst. 2016; 16‒45.

24. Probst A V, Scheid OM. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol. 2015;27: 8‒16.

25. Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18: 124.

26. Gouil Q, Baulcombe DC. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 2016;12: e1006526.

27. Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X. Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing. Plant Cell. 2018;30: 134‒152. doi:10.1105/tpc.17.00626

28. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16: 519‒532. doi:10.1038/nrm4043

29. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22: 3118‒3129. doi:10.1105/tpc.110.078493

30. Sun L, Jing Y, Liu X, Li Q, Xue Z, Cheng Z, et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun. 2020;11: 1886.

31. Liu S, De Jonge J, Trejo‐Arellano MS, Santos‐González J, Köhler C, Hennig L. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytol. 2021;229: 2238‒2250.

32. Dubin MJ, Zhang P, Meng D, Remigereau M-SS, Osborne EJ, Paolo Casale F, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife. 2015;4: e05255. doi:10.7554/eLife.05255

33. Popova O V, Dinh HQ, Aufsatz W, Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant. 2013;6: 396‒410.

34. Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, et al. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem. 2015;87: 102‒108. doi:10.1016/j.plaphy.2014.12.022

35. Zhang C, Du X, Tang K, Yang Z, Pan L, Zhu P, et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat Commun. 2018;9: 4547.

36. Zhou W, Liang G, Molloy PL, Jones PA. DNA methylation enables transposable element-driven genome expansion. Proc Natl Acad Sci. 2020;117: 19359‒19366.

37. Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18: 1166‒76. doi:10.1105/tpc.106.041400

38. Chan SWL, Henderson IR, Zhang X, Shah G, Chien JSC, Jacobsen SE. RNAi, DRD1, and histone methylation actively target developmentally important Non- CG DNA methylation in Arabidopsis. PLoS Genet. 2006;2: 0791‒0797. doi:10.1371/journal.pgen.0020083

39. Henderson IR, Jacobsen SE. Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev. 2008;22: 1597‒1606. doi:10.1101/gad.1667808

40. Jiang J, Liu J, Sanders D, Qian S, Ren W, Song J, et al. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat Plants. 2021;7: 184‒197. doi:10.1038/s41477-020-00843-4

41. Qian S, Lv X, Scheid RN, Lu L, Yang Z, Chen W, et al. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Nat Commun. 2018;9: 2425. doi:10.1038/s41467-018-04836-y

42. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114‒2120.

43. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37: 907‒915.

44. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11: R25.

45. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34: i884‒i890.

46. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13: R87.

47. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26: 841‒842.

48. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357.

49. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9: 1‒9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る