リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヒストンバリアントH2A.Zによるエピジェネティック制御機構の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヒストンバリアントH2A.Zによるエピジェネティック制御機構の解析

高橋 大輔 東北大学

2021.03.25

概要

多細胞から成る真核生物の細胞は、同様の遺伝情報を有するにも関わらず、異なる細胞に分化し、環境に応じて様々な応答を示す。ヒトをはじめとする多細胞生物においては、受精卵と終末分化した細胞の双方が同一の遺伝情報を有しているにも関わらず、それぞれが異なる形質や特性を有している。同一の細胞であっても、熱や酸化ストレスなどのストレス環境下では異なる遺伝子発現パターンを示す。これらはゲノムDNAの塩基配列とは独立したゲノム機能制御機構であるエピジェネティック制御によるものである。また、エピジェネティック制御の分子基盤としてクロマチン構造の変換が知られている。真核生物のゲノムDNAはクロマチン構造を形成することで高次に折り畳まれ、微小な構造体である核の中に収納されている(Fig. 1A)。このクロマチン構造はコアヒストンと呼ばれるH2A、H2B、H3、H4が2分子ずつ結合したヒストン8量体に対して約147bpのDNAが巻き付いたヌクレオソーム構造を基本構成単位としている[1](Fig. 1A、1B)。このヌクレオソームが数珠状に連なることでクロマチン構造が形成されている。

 クロマチン構造は長大なゲノムDNAを核内に収納するための構造であると考えられていた。しかし近年クロマチン構造は非常に動的な変換を受けていることが明らかになっている。この構造変換がエピジェネティック制御における基本的な分子基盤となっており、様々なクロマチン構造変換因子によって複雑な制御が行われている。凝集したクロマチン構造はヘテロクロマチン、弛緩したクロマチン構造はユークロマチンと呼ばれ、それぞれエピジェネティック制御に異なる寄与を示す(Fig.1A)。この構造変換によって、多くのゲノム機能が制御されている。例を挙げると、ヘテロクロマチンは遺伝子発現を不活性化させる。これは凝集することによって転写因子やRNAポリメラーゼの結合を阻害するためである。ヘテロクロマチンは正常な染色体分配においても必要な構造である。動原体を形成するゲノム領域であるセントロメア領域の近傍には、ヘテロクロマチン構造が形成されている[2]。このヘテロクロマチンが染色体同士の対合に必要であるという報告もある[3]。これに対して、弛緩した構造であるユークロマチンは遺伝子発現を活性化させる構造である。これは弛緩することで転写因子やRNAポリメラーゼ、エピジェネティック制御因子などのリクルートを促進することによるものである。またユークロマチンはDNA損傷修復の際にも必要となることが知られている。これはDNA損傷修復に必要なマシナリーのアクセシビリティを高めるためであると考えられている。このようにクロマチン構造の変換によって様々なゲノム機能が制御されており、これがエピジェネティック制御の分子基盤となっている。

この論文で使われている画像

参考文献

[1] K. Luger, T. J. Rechsteiner, A. J. Flaus, M. M. Y. Waye, and T. J. Richmond, “Characterization of nucleosome core particles containing histone proteins made in bacteria,” J. Mol. Biol., vol. 272, no. 3, pp. 301–311, 1997.

[2] M. Lou Pardue and J. G. Gall, “Chromosomal localization of mouse satellite DNA,” Science (80-. )., vol. 168, no. 3937, pp. 1356–1358, 1970.

[3] E. Luk et al., “Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome,” Cell, vol. 143, no. 5, pp. 725–736, 2010.

[4] A. J. Bannister et al., “Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain,” Nature, vol. 410, no. 6824, pp. 120–124, 2001.

[5] S. Machida et al., “Structural Basis of Heterochromatin Formation by Human HP1,” Mol. Cell, vol. 69, no. 3, pp. 385-397.e8, 2018.

[6] K. Zanier et al., “Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression,” Rna, vol. 8, no. 1, pp. 29–46, Jan. 2002.

[7] K. F. Sullivan, “A solid foundation: Functional specialization of centromeric chromatin,” Curr. Opin. Genet. Dev., vol. 11, no. 2, pp. 182–188, 2001.

[8] V. Régnier et al., “CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1,” Mol. Cell. Biol., vol. 25, no. 10, pp. 3967–3981, 2005.

[9] R. Matsuda, T. Hori, H. Kitamura, K. Takeuchi, T. Fukagawa, and M. Harata, “Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant,” Nucleic Acids Res., vol. 38, no. 13, pp. 4263–4273, 2010.

[10] M. C. Keogh et al., “The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4,” Genes Dev., vol. 20, no. 6, pp. 660–665, 2006.

[11] S. V. Kumar and P. A. Wigge, “H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis,” Cell, vol. 140, no. 1, pp. 136–147, 2010.

[12] A. van Daal and S. C. Elgin, “A histone variant, H2AvD, is essential in Drosophila melanogaster.,” Mol. Biol. Cell, vol. 3, no. 6, pp. 593–602, 2013.

[13] R. Faast et al., “Histone variant H2A.Z is required for early mammalian development,” Curr. Biol., vol. 11, no. 15, pp. 1183–1187, 2001.

[14] N. Iouzalen, J. Moreau, and M. Méchali, “H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A,” Nucleic Acids Res., vol. 24, no. 20, pp. 3947–3952, 1996.

[15] X. Liu, B. Li, and GorovskyMA, “Essential and nonessential histone H2A variants in Tetrahymena thermophila.,” Mol. Cell. Biol., vol. 16, no. 8, pp. 4305–4311, 1996.

[16] C. Vardabasso et al., “Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma,” Mol. Cell, vol. 59, no. 1, pp. 75–88, 2015.

[17] T. Baptista et al., “Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer,” Oncotarget, vol. 4, no. 10, pp. 1673–1685, 2013.

[18] K. Kim et al., “Gene dysregulation by histone variant H2A.Z in bladder cancer,” Epigenetics and Chromatin, vol. 6, no. 1, pp. 1–13, 2013.

[19] S. Hua et al., “Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression,” Mol. Syst. Biol., vol. 4, no. 188, pp. 1–14, 2008.

[20] A. Svotelis, N. Gévry, G. Grondin, and L. Gaudreau, “H2A.Z overexpression promotes cellular proliferation of breast cancer cells,” Cell Cycle, vol. 9, no. 2, pp. 364–370, 2010.

[21] D. Takahashi et al., “Quantitative regulation of histone variant H2A.Z during cell cycle by ubiquitin proteasome system and SUMO-targeted ubiquitin ligases,” Biosci. Biotechnol. Biochem., vol. 81, no. 8, pp. 1557–1560, 2017.

[22] L. M. Zink and S. B. Hake, “Histone variants: Nuclear function and disease,” Curr. Opin. Genet. Dev., vol. 37, pp. 82–89, 2016.

[23] A. Janssen and R. H. Medema, “Mitosis as an anti-cancer target,” Oncogene, vol. 30, no. 25, pp. 2799–2809, 2011.

[24] G. MizuguchiXuetong, “ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex,” vol. 303, no. January, pp. 343–349, 2016.

[25] M. Altaf et al., “NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex,” J. Biol. Chem., vol. 285, no. 21, pp. 15966–15977, 2010.

[26] A. Ranjan et al., “Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement,” Cell, vol. 154, no. 6, p. 1232, 2013.

[27] D. Rangasamy, I. Greaves, and D. J. Tremethick, “RNA interference demonstrates a novel role for H2A.Z in chromosome segregation,” Nat. Struct. Mol. Biol., vol. 11, no. 7, pp. 650–655, 2004.

[28] A. Kawano, Y. Hayashi, S. Noguchi, H. Handa, M. Horikoshi, and Y. Yamaguchi, “Global analysis for functional residues of histone variant Htz1 using the comprehensive point mutant library,” Genes to Cells, vol. 16, no. 5, pp. 590–607, 2011.

[29] M. Kusakabe et al., “Genetic complementation analysis showed distinct contributions of the N-terminal tail of H2A.Z to epigenetic regulations,” Genes to Cells, vol. 21, no. 2, pp. 122–135, 2016.

[30] I. K. Greaves, D. Rangasamy, P. Ridgway, and D. J. Tremethick, “H2A.Z contributes to the unique 3D structure of the centromere.,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 2, pp. 525–530, 2007.

[31] Y. H. Ling and K. W. Y. Yuen, “Point centromere activity requires an optimal level of centromeric noncoding RNA,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 13, pp. 6270–6279, 2019.

[32] C. Jin et al., “H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome- free regions’ of active promoters and other regulatory regions,” Nat. Genet., vol. 41, no. 8, pp. 941–945, 2009.

[33] F. Valdés-Mora et al., “Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer,” Nat. Commun., vol. 8, no. 1, 2017.

[34] F. Valdés-Mora et al., “Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer,” Genome Res., vol. 22, no. 2, pp. 307–321, 2012.

[35] C. J. Dunn et al., “Histone hypervariants H2A.Z. 1 and H2A. Z. 2 play independent and context-specific roles in neuronal activity-induced transcription of Arc / Arg3 . 1 and other immediate early genes . Corresponding author :,” vol. 4, no. August, pp. 1–30, 2017.

[36] M. S. Santisteban, T. Kalashnikova, and M. M. Smith, “Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes,” Cell, vol. 103, no. 3, pp. 411–422, 2000.

[37] H. Van Attikum, O. Fritsch, and S. M. Gasser, “Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks,” EMBO J., vol. 26, no. 18, pp. 4113–4125, 2007.

[38] H. A. Z. Kata et al., “DNA repair complex licenses acetylation of H2A.Z.1 by KAT2A during transcription,” Nat. Chem. Biol., vol. 15, no. October, 2019.

[39] K. Shimada et al., “TORC2 Signaling Pathway Guarantees Genome Stability in the Face of DNA Strand Breaks,” Mol. Cell, vol. 51, no. 6, pp. 829–839, 2013.

[40] T. Konishi and M. Harata, “Improvement of the transformation efficiency of Sacchaaromyces cerevisiae by altering carbon sources in pre-culture,” Biosci. Biotechnol. Biochem., vol. 78, no. 6, pp. 1090–1093, 2014.

[41] R. Anand, G. Memisoglu, and J. Haber, “Cas9-mediated gene editing in Saccharomyces cerevisiae,” Protoc. Exch., pp. 1–6, 2017.

[42] D. N. Bagchi, A. M. Battenhouse, D. Park, and V. R. Iyer, “The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription,” Nucleic Acids Res., vol. 48, no. 1, pp. 157–170, 2020.

[43] D. G. Brickner et al., “H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state,” PLoS Biol., vol. 5, no. 4, pp. 704–716, 2007.

[44] M. Kalocsay, N. J. Hiller, and S. Jentsch, “Chromosome-wide Rad51 Spreading and SUMO-H2A.Z-Dependent Chromosome Fixation in Response to a Persistent DNA Double-Strand Break,” Mol. Cell, vol. 33, no. 3, pp. 335–343, Feb. 2009.

[45] C. Heinis, T. Rutherford, S. Freund, and G. Winter, “Phage-encoded combinatorial chemical libraries based on bicyclic peptides,” Nat. Chem. Biol., vol. 5, no. 7, pp. 502– 507, 2009.

[46] E. O. Maruyama et al., “The actin family member Arp6 and the histone variant H2A.Z are required for spatial positioning of chromatin in chicken cell nuclei,” J. Cell Sci., vol. 125, no. 16, pp. 3739–3743, 2012.

[47] M. Ku et al., “H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions,” Genome Biol., vol. 13, no. 10, 2012.

[48] S. Venkatasubrahmanyam, W. W. Hwang, M. D. Meneghini, A. H. Y. Tong, and H. D. Madhani, “Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 42, pp. 16609–16614, 2007.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る