リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the control of avian influenza and Newcastle disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the control of avian influenza and Newcastle disease

Augustin, Tshibwabwa TWABELA 北海道大学

2021.06.30

概要

The current thesis study aims to contribute to the control of avian influenza (AI) and Newcastle disease (ND). These two avian diseases are important given their devastating character in bird populations impacting to food safety and economic loss, also threatening some endangered bird species. AI has also the zoonotic potential of pandemic threat.

 In chapter I, important information about an H5N8 high pathogenicity avian influenza virus (HPAIV) that was detected for the first time in the Democratic Republic of Congo (DRC) in 2017 was provided. These viruses were classified in the clade 2.3.4.4b together with those detected in Eurasia suggesting the same origin of these HPAIVs. No antigenic difference was noticed between the DRC HPAIVs and other viruses in the same genetic clade 2.3.4.4, and no reassortment events were observed in the DRC isolates. However, these isolates increased the virulence in Muscovy duck than other HPAIVs in the same genetic clade. Therefore, continuous surveillance in poultry and wild bird population is recommended for the control of avian influenza viruses in the region.

 Chapter II described the Newcastle disease virus (NDV) isolated in the DRC in 2018 and 2019 that caused high mortality of poultry in the backyard farms. From those outbreaks, three NDVs were isolated from chickens. Given that there is a lack of information about NDV circulating in the DRC, this study provided the genetic and virological characteristics of the NDVs. Among the NDVs isolated in the DRC, two were classified as a new variant of NDV, the other one was classified in genotype VII. No antigenic difference was observed between the DRC isolates and the vaccine strains used in DRC, and the experimental assessment revealed that the vaccine used for Newcastle disease (ND) in the DRC still effective to protect chickens against the newly isolated NDVs. Further epidemiological studies are required to elucidate the endemicity of the ND in the DRC.

 HPAIVs are threatening not only the poultry industry, but wild bird populations are also exposed and the HPAIVs can cause high mortality in susceptible wild birds. Chapter III evaluated two human antiviral drugs namely baloxavir marboxil (BXM) and peramivir (PR) that can be used for the treatment of some valuable captive wild birds against HPAIV infection. The drug efficacy was assessed by infecting chickens as an animal model with an HPAIV, followed by the treatment immediately or delayed. BXM was effective to protect completely all infected chickens in the simultaneous treatment while PR partially protected chickens. The metabolism of BXM was assessed in chicken and Pekin ducks and the blood concentration was similar in these two bird species suggesting that BXM can be used in other bird species.

 The results obtained from chapter I and II provided the essential information about AI and ND isolated in the DRC; chapter III provided an alternative way to protect some wild captive birds that can be killed by HPAIV infection. Together the data will contribute to the control and prevention of AV and ND in different situations.

この論文で使われている画像

参考文献

1. Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179.

2. Ottis, K.; Bachmann, P.A. Isolation and characterization of ortho- and paramyxoviruses from feral birds in Europe. Zentralbl Veterinarmed B 1983, 30, 22–35.

3. Pohlmann, A.; Hoffmann, D.; Grund, C.; Koethe, S.; Hüssy, D.; Meier, S.M.; King, J.; Schinköthe, J.; Ulrich, R.; Harder, T.; Beer, M. Genetic characterization and zoonotic potential of highly pathogenic Avian influenza virus A(H5N6/H5N5), Germany, 2017- 2018. Emerg. Infect. Dis. 2019, 25, 1973–1976.

4. Widdowson, M.A.; Bresee, J.S.; Jernigan, D.B. The global threat of animal influenza viruses of zoonotic concern: then and now. J. Infect. Dis. 2017, 216, S493–S498.

5. Arbi, M.; Souiai, O.; Rego, N.; Larbi, I.; Naya, H.; Ghram, A.; Houimel, M. Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Arch. Virol. 2020, 165, 1527–1540.

6. Simulundu, E.; Nao, N.; Yabe, J.; Muto, N.A.; Sithebe, T.; Sawa, H.; Manzoor, R.; Kajihara, M.; Muramatsu, M.; Ishii, A., et al. The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia. Arch. Virol. 2014, 159, 2633–2640.

7. Twabela, A.T.; Tshilenge, G.M.; Sakoda, Y.; Okamatsu, M.; Bushu, E.; Kone, P.; Wiersma, L.; Zamperin, G.; Drago, A.; Zecchin, B., Monne, I. Highly pathogenic avian influenza A(H5N8) virus,Democratic Republic of the Congo, 2017. Emerg. Infect. Dis. 2018, 24, 1371–1374.

8. Swayne, D.E.; Spackman, E. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza. Dev. Biol. 2013, 135, 79-94.

9. Donis, R.O.; Smith, G.; Brown, I.H.; Capua, I.; Cattoli, G.; Chen, H.; Cox, N.; Davis, C.T.; Donis, R.O.; Fouchier, R.A.M., et al. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: Divergence of clade 2·2 viruses. Influenza Other Resp. 2009, 3, 59–62.

10. Donis, R.O.; Smith, G.J.D.; Perdue, M.L.; Brown, I.H.; Chen, H.; Fouchier, R.A.M.; Kawaoka, Y.; Mackenzie, J.; Shu, Y.; Capua, I., et al. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, e1.

11. Claes, F.; Morzaria, S.P.; Donis, R.O. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses - How is the Asian HPAI H5 lineage maintained. Curr. Opin. Virol. 2016, 16, 158–163.

12. Chen, Z.; Liu, X.; Zhao, M.; Liu, X.; Zhu, Y.; Zhang, Y.; Liu, W.; Zhao, K.; Duan, Z.; Gu, M., et al. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet. Microbiol. 2013, 163, 351–357.

13. Lee, D. H.; Bahl, J., Torchetti, M. K.; Killian, M. L.; Ip, H. S.; DeLiberto, T. J.; Swayne, D. E. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1283–1285.

14. Lee, D. H.; Torchetti, M. K.; Winker, K.; Ip, H. S.; Song, C. S.; Swayne, D. E. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J. Virol. 2015, 89, 6521–6524.

15. Kang, H.M.; Lee, E.K.; Song, B.M.; Jeong, J.; Choi, J.G.; Jeong, J.; Moon, O.K.; Yoon, H.; Cho, Y.; Kang, Y.M., et al. Novel reassortant influenza A(H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg. Infect. Dis. 2015, 21, 298–304.

16. Pohlmann, A.; Starick, E.; Harder, T.; Grund, C.; Hoper, D.; Globig, A.; Staubach, C.; Dietze, K.; Strebelow, G.; Ulrich, R.G., Schinköthe, J., Teifke, J. P., Conraths, F. J., Mettenleiter, T. C., Beer, M. Outbreaks among wild birds and domestic poultry caused by reassorted influenza A(H5N8) clade 2.3.4.4 viruses, Germany, 2016. Emerg. Infect. Dis. 2017, 23, 633–636.

17. Lee, D.H.; Bertran, K.; Kwon, J.H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J. Vet Sci 2017, 18, 269–280.

18. Ghafouri, S.A.; GhalyanchiLangeroudi, A.; Maghsoudloo, H.; KH Farahani, R.; Abdollahi, H.; Tehrani, F.; Fallah, M.H. Clade 2.3.4.4 avian influenza A (H5N8) outbreak in commercial poultry, Iran, 2016: the first report and update data. Trop. Anim. Health Prod. 2017, 49, 1089–1093.

19. Fusaro, A.; Monne, I.; Mulatti, P.; Zecchin, B.; Bonfanti, L.; Ormelli, S.; Milani, A.; Cecchettin, K.; Lemey, P.; Moreno, A.; Massi, P.; Dorotea, T.; Marangon, S.; Terregino, C. Genetic diversity of highly pathogenic avian influenza A(H5N8/H5N5) viruses in Italy, 2016–17. Emerg. Infect. Dis. 2017, 23, 1543–1547.

20. Selim, A.A.; Erfan, A.M.; Hagag, N.; Zanaty, A.; Samir, A.-H.; Samy, M.; Abdelhalim, A. ; Arafa, A.-S.A.; Soliman, M.A.; Shaheen, M.; Ibraheem, E. M.; Mahrous, I.; Hassan, M. K.; Naguib, M. M. Highly pathogenic avian influenza virus (H5N8) clade 2.3.4.4 infection in migratory birds, Egypt. Emerg. Infect. Dis. 2017, 23, 1048–1051.

21. World Organization for Animal Health. Update on Highly Pathogenic Avian Influenza in animals. 2015; 1-1. http://www.oie.int/animal-health-in-the-world-avian-influenza/2015/. Accessed 20 October 2018.

22. Ndumu, D.; Zecchin, B.; Fusaro, A.; Arinaitwe, E.; Erechu, R.; Kidega, E.; Kayiwa, J.; Muwanga, E.; Kirumira, M.; Kirembe, G., Lutwama, J., Monne, I. Highly pathogenic avian influenza H5N8 clade 2.3.4.4B virus in Uganda, 2017. Infect. Genet. Evol. 2018, 66, 269–271.

23. Wade, A.; Jumbo, S.D.; Zecchin, B.; Fusaro, A.; Taiga, T.; Bianco, A.; Rodrigue, P.N.; Salomoni, A.; Kameni, J.M.F.; Zamperin, G.; Nenkam, R.; Foupouapouognigni, Y.; Abdoulkadiri, S.; Aboubakar, Y.; Wiersma, L.; Cattoli, G.; Monne, I. Highly pathogenic avian influenza A(H5N8) virus, Cameroon, 2017. Emerg. Infect. Dis. 2018, 24, 1367–1370.

24. Bodewes, R.; Kuiken, T. Chapter twelve-changing role of wild birds in the epidemiology of avian influenza A viruses. Adv. Virus Res. 2018, 100, 279-307.

25. Fourment, M.; Darling, A.E.; Holmes, E.C. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol. Biol. 2017, 17, 118.

26. Basha, H.A.; Naby, W.S.; Heikal, H. Genetic diversity and phylogenetic relationship among three duck breeds and geese using RAPD markers. Adv. Anim. Vet. Sci. 2016, 4, 462–467.

27. Khan Ahmadi, A.; Rahimi, G.; Vafaei, A.; Sayyazadeh, H. Microsatellite analysis of genetic diversity in Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) duck populations. Int. J. Poult. Sci. 2007, 6, 378–382.

28. World Organization for Animal Health. Avian influenza. In manual of diagnostic tests and vaccines for terrestrial animals 2018, Chapter 3.3.4. https://www.oie.int/standardsetting/terrestrial-manual/access-online/2019/. Accessd 15 June 2019.

29. Reed L.J. and Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497.

30. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874.

31. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120.

32. Wilson, I.A.; Skehel, J.J.; Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 1981, 289, 366–373.

33. Kida, H.; Yanagawa, R. Isolation and characterization of influenza a viruses from wild free-flying ducks in Hokkaido, Japan. Zbt. Bakt. Hyg. Orig. A. 1979, 244, 135–143.

34. Okamatsu, M.; Ozawa, M.; Soda, K.; Takakuwa, H.; Haga, A.; Hiono, T.; Matsuu, A.; Uchida, Y.; Iwata, R.; Matsuno, K., et al. Characterization of highly pathogenic avian influenza virus A(H5N6), Japan, November 2016. Emerg. Infect. Dis. 2017, 23, 691–695.

35. Smith, D.J.; Lapedes, A.S.; de Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Mapping the antigenic and genetic evolution of influenza virus. Science 2004, 305, 371–376.

36. Cai, Z.; Zhang, T.; Wan, X.-F. Antigenic distance measurements for seasonal influenza vaccine selection. Vaccine 2012, 30, 448–453.

37. Khomenko, S.; Abolnik, C.; Roberts, L.; Waller, L.; Shaw, K.; Monne. I.; Taylor, J.; Dhingra, M.; Pittiglio, C.; Mugyeom, M.; Roche, X.; Fredrick, K.; Kamata, A.; Okuthe, S.; Kone, P.; Wiersma, L.; Dobschuetz, S.V,; Soumare, B.; Makonnen, Y.; Morzaria, S.; Lubroth, J. 2016–2018 spread of H5N8 highly pathogenic avian influenza (HPAI) in sub- Saharan Africa: epidemiological and ecological. Food and Agriculture Organization of the United Nations Emerging Prevention System, Rome. FOCUS ON No. 12, Aug 2018

38. Moatasim, Y.; Kandeil, A.; Kayali, G.; Ali, M.A.; McKenzie, P.P.; Webby, R.J.; Kayed, A. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J. Gen. Virol. 2017, 98, 1573–1586.

39. Piersma, T.; Lindstrom, A. Migrating shorebirds as integrative sentinels of global. Ibis 2004, 146, 61–69.

40. Hiono, T.; Okamatsu, M.; Matsuno, K.; Haga, A.; Iwata, R.; Nguyen, L.T.; Suzuki, M.; Kikutani, Y.; Kida, H.; Onuma, M.; Sakoda, Y. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016–2017 in Northern Japan. Microbiol. Immunol. 2017, 61, 387–397.

41. Nguyen, L.T.; Nishi, T.; Shichinohe, S.; Chu, D.H.; Hiono, T.; Matsuno, K.; Okamatsu, M.; Kida, H.; Sakoda, Y. Selection of antigenic variants of an H5N1 highly pathogenic avian influenza virus in vaccinated chickens. Virology 2017, 510, 252–261.

42. Anis, A.; AboElkhair, M.; Ibrahim, M. Characterization of highly pathogenic avian influenza H5N8 virus from Egyptian domestic waterfowl in 2017. Avian Pathol. 2018, 47, 400–409.

43. Uchida, Y.; Mine, J.; Takemae, N.; Tanikawa, T.; Tsunekuni, R.; Saito, T. Comparative pathogenicity of H5N6 subtype highly pathogenic avian influenza viruses in chicken, Pekin duck and Muscovy duck. Transbound. Emerg. Dis. 2019, 66, 1227–1251.

44. Grund, C.; Hoffmann, D.; Ulrich, R.; Naguib, M.; Schinköthe, J.; Hoffmann, B.; Harder, T.; Saenger, S.; Zscheppang, K.; Tönnies, M., et al. A novel European H5N8 influenza A virus has increased virulence in ducks but low zoonotic potential. Emerg. Microbes Infect. 2018, 7, 1–14.

45. Sun, H.; Pu, J.; Hu, J.; Liu, L.; Xu, G.; Gao, G.F.; Liu, X.; Liu, J. Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens. Vet. Microbiol. 2016, 182, 116–122.

46. International committee on taxonomy of viruses. ICTV Taxonomy: 2018b. Release, Available at. https://talk.ictvonline.org/taxonomy/2019. Accessed on 11 November 2020.

47. Lamb, R.A.; Parks, P.G.; Paamyxoviridae. In: Knipe, D.M.; Howley, P.M. (eds) Fields Virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, USA. 2013,1, 957–995.

48. Samson, A.C.R.; Levesley, I.; Russell, P.H. The 36K polypeptide synthesized in Newcastle disease virus-infected cells possesses properties predicted for the hypothesized ‘V’ protein. J. Gen. Virol. 1991, 72, 1709–1713.

49. Steward, M.; Vipond, I.B.; Millar, N.S.; Emmerson, P.T. RNA editing in Newcastle disease virus. J. Gen. Virol. 1993, 74, 2539–2547.

50. de Leeuw, O.; Peeters, B. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J. Gen. Virol. 1999, 80, 131–136.

51. Kim, D.; Martinez-Sobrido, L.; Choi, C.; Petroff, N.; García-Sastre, A.; Niewiesk, S.; Carsillo, T. Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies. J. Virol. 2011, 85, 200–207.

52. Miller, P.J.; Estevez, C.; Yu, Q.; Suarez, D.L.; King, D.J. Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Dis. 2009, 53, 39–49, 11.

53. Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, FX.; Brown, IH.; Choi, K.S.; Chvala, I.; Diel, D.G.; Durr, P.A.; Ferreira, H.L.; Fusaro, A.; Gil, P.; Goujgoulova, G.V.; Grund, C.; Hicks, J.T.; Joannis, T.M.; Torchetti, M.K.; Kolosov, S.; Lambrecht, B.; Lewis, N.S.; Liu, H.; Liu, H.; McCullough, S.; Miller, P.J.; Monne, I.; Muller, C..;, Munir, M.; Reischak, D.; Sabra, M.; Samal, S.K.; Servan de Almeida, R.; Shittu, I.; Snoeck, C.J.; Suarez, D.L.; Van Borm, S.; Wang, Z.; Wong, F.Y.K. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Gen. Evol. 2019, 74, 103917.

54. Alexander, D.J. Newcastle disease and other avian paramyxoviruses. Revue scientifique et technique (International Office of Epizootics) 2000, 19, 443–462.

55. Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect. Genet. Evol. 2016, 39,22–34.

56. Nagai, Y.; Klenk, H.D.; Rott, R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 1976, 72, 494–508.

57. Dortmans, J.C.F.M.; Koch, G.; Rottier, P.J.M.; Peeters, B.P.H. Virulence of Newcastle disease virus: what is known so far? Vet. Res. 2011, 42, 122.

58. African–Union, Interafrican Bureau for Animal Resources (A.U.-I.B.F.A). Nwecastel Disease 2011. Available online: www.au-ibar.org/2012-10-01-13./348-newcastle- disease. Accessed on 15 October 2020.

59. World Organization for Animal Health (OIE). Newcastle disease virus (Infection with Newcastle disease virus). In the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2019. OIE: Paris, France, 2019; pp 964–983. Avialable online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/. Accessed on 10 October 2020.

60. Gravendyck, M.; Tritt, S.; Spenkoch‐Piper, H.; Kaleta, E.F. Antigenic diversity of psittacine herpesviruses: Cluster analysis of antigenic differences obtained from cross‐ neutralization tests. Avian Pathol. 1996, 25, 345–357.

61. Archetti , I.; Horsfall , F.L., Jr. Persistent antigenic variation of influenza a viruses after incomplete neutralization in ovo with heterologous immune serum. J. Exp. Med. 1950, 92, 441–462.

62. Lwapa, F.E.I.; Masumu, J.M.; Matala, F.M.; Mukoko, F.N.; Mbao, V.; Moula, N.; Antoine-Moussiaux, N. Participatory assessment of paid vaccination campaigns for village chickens against Newcastle disease in Kongo Central province. Pre. Vet. Med. 2019, 172, 104783.

63. Young, M.B.; Alders, R.; Grimes, S.; Spradbrow, P.B.; Dias, P.; Silva, A.D.; Lobo, Q. Controlling Newcastle disease in village chickens–A laboratory manual; monographs, australian centre for international agricultural research: Canberra, Australia, 2002, 117714, 46–51.

64. Miller, P.J.; King, D.J.; Afonso, C.L.; Suarez, D.L. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 2007, 25, 7238–46.

65. Cattoli, G.; Fusaro, A.; Monne, I.; Molia, S.; Le Menach, A.; Maregeya, B.; Nchare, A.; Bangana, I.; Maina, A.G.; N’Goran Koffi, J.N., et al. Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa–Implications for diagnosis and control. Vet. Microbiol. 2010, 142, 168–176.

66. Capua, I.; Alexander, D.J. Avian influenza: recent developments. Avian Pathol. 2004, 33, 393–404.

67. de Wit, E.; Kawaoka, Y.; de Jong, M.D.; Fouchier, R.A.M. Pathogenicity of highly pathogenic avian influenza virus in mammals. Vaccine 2008, 26 Suppl 4, D54–D58.

68. Alexander, D.J.; Parsons, G.; Manvell, R.J. Experimental assessment of the pathogenicity of eight avian influenza a viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathol. 1986, 15, 647–662.

69. Oh, S.; Martelli, P.; Hock, O.S.; Luz, S.; Furley, C.; Chiek, E.J.; Wee, L.C.; Keun, N.M. Field study on the use of inactivated H5N2 vaccine in avian species. Vet. Rec. 2005, 157, 299–300.

70. Krone, O.; Globig, A.; Ulrich, R.; Harder, T.; Schinköthe, J.; Herrmann, C.; Gerst, S.; Conraths, F.J.; Beer, M. White-tailed sea eagle (Haliaeetus albicilla) die-off due to infection with highly pathogenic avian influenza virus, subtype H5N8, in Germany. Viruses 2018, 10, 478.

71. Peyre, M.; Fusheng, G.; Desvaux, S.; Roger, F. Avian influenza vaccines: a practical review in relation to their application in the field with a focus on the Asian experience. Epidemiol. Infect. 2009, 137, 1–21.

72. Swayne, D.E. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis. 2012, 56, 818–828.

73. Ohkawara, A.; Okamatsu, M.; Ozawa, M.; Chu, D.H.; Nguyen, L.T.; Hiono, T.; Matsuno, K.; Kida, H.; Sakoda, Y. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol. Immunol. 2017, 61, 149–158.

74. World Health Organization. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Weekly Epidemiological Record, 2017, 90, 561–571.

75. Gulbudak, H.; Martcheva, M. A structured avian influenza model with imperfect vaccination and vaccine-induced asymptomatic infection. Bull. Math. Biol. 2014, 76, 2389–2425.

76. Kakogawa, M.; Manubu, O.; Kirisawa, R.; Asakawa, M. Countermeasures for avian influenza outbreaks among captive avian collections at zoological gardens and aquariums in Japan. Microbiol. Exp. 2019, 7, 167–171.

77. Philippa, J.D.W.; Munster, V.J.; Bolhuis, H.v.; Bestebroer, T.M.; Schaftenaar, W.; Beyer, W.E.P.; Fouchier, R.A.M.; Kuiken, T.; Osterhaus, A.D.M.E. Highly pathogenic avian influenza (H7N7): vaccination of zoo birds and transmission to non-poultry species. Vaccine 2005, 23, 5743–5750.

78. Shie, J.J.; Fang, J.M. Development of effective anti-influenza drugs: congeners and conjugates – a review. J. Biomed. Sci. 2019, 26, 84.

79. Principi, N.; Camilloni, B.; Alunno, A.; Polinori, I.; Argentiero, A.; Esposito, S. Drugs for influenza treatment: is there significant news? Front. Med. (Lausanne) 2019, 6, 109– 109.

80. Kaleta, E.F.; Blanco Peña, K.M.; Yilmaz, A.; Redmann, T.; Hofheinz, S. Avian influenza A viruses in birds of the order Psittaciformes: reports on virus isolations, transmission experiments and vaccinations and initial studies on innocuity and efficacy of oseltamivir in ovo. Dtsch Tierarztl Wochenschr 2007, 114, 260–267.

81. Lee, D.H.; Lee, Y.N.; Park, J.K.; Yuk, S.S.; Lee, J.W.; Kim, J.I.; Han, J.S.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Song, C.S. Antiviral Efficacy of Oseltamivir against avian influenza virus in avian species. Avian Dis. 2011, 55, 677–679.

82. Meijer, A.; van der Goot, J.A.; Koch, G.; van Boven, M.; Kimman, T.G. Oseltamivir reduces transmission, morbidity, and mortality of highly pathogenic avian influenza in chickens. Int. Congr. 2004, 1263, 495–498.

83. Afonso, C.L., Miller, P. J., Grund, C., Koch, G., Peeters, B., Selleck, P. W.,; & Srinivas, G.B. Manual of diagnosis tests and vaccines for terrestrial animals. 7th ed.;World Organization for Animal Health: Paris, France, 2012, 2, 865–878.

84. Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S., et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N. Engl. J. Med. 2018, 379, 913–923.

85. Koshimichi, H.; Ishibashi, T.; Kawaguchi, N.; Sato, C.; Kawasaki, A.; Wajima, T. Safety, tolerability, and pharmacokinetics of the novel anti-influenza agent baloxavir marboxil in healthy adults: phase I study findings. Clin. Drug Investig. 2018, 38, 1189–1196.

86. Yun, N.E.; Linde, N.S.; Zacks, M.A.; Barr, I.G.; Hurt, A.C.; Smith, J.N.; Dziuba, N.; Holbrook, M.R.; Zhang, L.; Kilpatrick, J.M.; Arnold, C. S.; & Paessler, S. Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1). Virology 2008, 374, 198– 209.

87. Dillon, R.C.; Witcher, R.; Cies, J.J.; Moore, W.S., 2nd; Chopra, A. Pharmacokinetics of Peramivir in an Adolescent Patient Receiving Continuous Venovenous Hemodiafiltration. J. Pediatr. Pharmacol. Ther. 2017, 22, 60–64.

88. Koshimichi, H.; Tsuda, Y.; Ishibashi, T.; Wajima, T. Population pharmacokinetic and exposure-response analyses of baloxavir marboxil in adults and adolescents including patients with influenza. J. Pharm. Sci. 2019, 108, 1896–1904.

89. McKimm-Breschkin, J.L.; Jiang, S.; Hui, D.S.; Beigel, J.H.; Govorkova, E.A.; Lee, N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antivir. Res. 2018, 149, 118–142.

90. Omoto, S.; Speranzini, V.; Hashimoto, T.; Noshi, T.; Yamaguchi, H.; Kawai, M.; Kawaguchi, K.; Uehara, T.; Shishido, T.; Naito, A., et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2018, 8, 9633.

91. Philippa, J.; Baas, C.; Beyer, W.; Bestebroer, T.; Fouchier, R.; Smith, D.; Schaftenaar, W.; Osterhaus, A. Vaccination against highly pathogenic avian influenza H5N1 virus in zoos using an adjuvanted inactivated H5N2 vaccine. Vaccine 2007, 25, 3800–3808.

92. Takeshi Noshi, K.S., Toru Ishibashi, Yoshinori Ando, Hiroshi Ueda, Ryoko Oka, Makoto Kawai, Ryu Yoshida, Akihiko Sato, Takao Shishido, and Akira Naito. Pharmacokinetic and pharmacodynamic analysis of S-033188/S-033447. A novel inhibitor of influenza virus Cap-dependent endonuclease, in mice infected with influenza A virus [P1973]. In: Final Programme of the 27th European congress of clinical Microbiology and Infectious Diseases (Vienna, Australia). 2017, 22–25.

93. Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 1982, 146, 47-51.

94. Wood, J.P.; Choi, Y.W.; Chappie, D.J.; Rogers, J.V.; Kaye, J.Z. Environmental persistence of a highly pathogenic avian influenza (H5N1) Virus. Envir. Sci. Technol. 2010, 44, 7515–7520.

95. Yamamoto, Y.; Nakamura, K.; Yamada, M.; Mase, M. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks. Appl. Environ. Microbiol. 2010, 76, 5496–5499.

参考文献をもっと見る