リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley

Yoshikawa, Takanori Hisano, Hiroshi Hibara, Ken-Ichiro Nie, Jilu Tanaka, Yuki Itoh, Jun-Ichi Taketa, Shin 京都大学 DOI:10.1093/aobpla/plac019

2022.06

概要

Barley (Hordeum vulgare) is the fourth most highly produced cereal in the world after wheat, rice and maize and is mainly utilized as malts and for animal feed. Barley, a model crop of the tribe Triticeae, is important in comparative analyses of Poaceae. However, molecular understanding about the developmental processes is limited in barley. Our previous work characterized one of two WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes present in the barley genome: NARROW LEAFED DWARF1 (NLD1). We demonstrated that NLD1 plays a pivotal role in the development of lateral organs. In the present study, we describe a bifurcated palea (bip) mutant of barley focusing on flower and leaf phenotypes. The palea in the bip mutant was split into two and develop towards inside the lemma surrounding the carpels and anthers. The bip mutant is devoid of lodicules, which develop in a pair at the base of the stamen within the lemma in normal barley. bip also exhibited malformations in leaves, such as narrow leaf due to underdeveloped leaf-blade width, and reduced trichome density. Map-based cloning and expression analysis indicated that BIP is identical to another barley WOX3 gene, named HvWOX3. The bip nld1 double mutant presented a more severe reduction in leaf-blade width and number of trichomes. By comparing the phenotypes and gene expression patterns of various WOX3 mutants, we concluded that leaf bilateral outgrowth and trichome development are promoted by both NLD1 and HvWOX3, but that HvWOX3 serves unique and pivotal functions in barley development that differ from those of NLD1.

参考文献

Angeles-Shim RB, Asano K, Takashi T, Shim J, Kuroha T, Ayano M,

Ashikari M. 2012. A WUSCHEL-related homeobox 3B gene,

depilous (dep), confers glabrousness of rice leaves and glumes. Rice

5:28.

Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT,

Paek NC. 2013. The rice narrow leaf2 and narrow leaf3 loci encode

WUSCHEL-related homeobox 3A (OsWOX3A) and function in

leaf, spikelet, tiller and lateral root development. New Phytologist

198:1071–1084.

Coen ES. 1991. The role of homeotic genes in flower development and

evolution. Annual Review of Plant Biology 42:241–279.

Endress PK. 2001. Origins of flower morphology. Journal of Experimental Zoology 291:105–115.

Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas

WTB. 2007. The barley phytomer. Annals of Botany 100:725–733.

Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H,

Herrmann M, Laux T. 2004. Expression dynamics of WOX genes

mark cell fate decisions during early embryonic patterning in

Arabidopsis thaliana. Development 131:657–668.

Honda E, Yew CL, Yoshikawa T, Sato Y, Hibara KI, Itoh JI. 2018. LEAF

LATERAL SYMMETRY1, a member of the WUSCHEL-RELATED

HOMEOBOX3 gene family, regulates lateral organ development

differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice. Plant and Cell Physiology 59:376–391.

Ishiwata A, Ozawa M, Nagasaki H, Kato M, Noda Y, Yamaguchi T,

Nosaka M, Shimizu-Sato S, Nagasaki A, Maekawa M, Hirano H,

Sato Y. 2013. Two WUSCHEL-related homeobox genes, narrow

leaf2 and narrow leaf3, control leaf width in rice. Plant and Cell

Physiology 54:779–792.

Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano

H, Nagato Y. 2005. Rice plant development: from zygote to spikelet. Plant and Cell Physiology 46:23–47.

Kouchi H, Hata S. 1993. Isolation and characterization of novel

nodulin cDNAs representing genes expressed at early stages of

soybean nodule development. Molecular and General Genetics

238:106–119.

Li J, Yuan Y, Lu Z, Yang L, Gao R, Lu J, Li J, Xiong G. 2012. Glabrous

Rice 1, encoding a homeodomain protein, regulates trichome development in rice. Rice 5:32.

Lombardo F, Yoshida H. 2015. Interpreting lemma and palea homologies: a point of view from rice floral mutants. Frontiers in Plant

Science 6:61.

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO,

Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M,

Ramsay L, Liu H, Haberer G, Zhang X, Zhang Q, Barrero RA, Li

L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková

H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker

S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso

S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L,

Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK,

Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI,

Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P,

Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman

AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M,

Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. 2017.

A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433.

Matsumoto N, Okada K. 2001. A homeobox gene, PRESSED

FLOWER, regulates lateral axis-dependent development of

Arabidopsis flowers. Genes and Development 15:3355–3364.

McHale NA. 1992. A nuclear mutation blocking initiation of the lamina in leaves of Nicotiana syhestris. Planta 186:355–360.

Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K.

2012. Roles of the middle domain-specific WUSCHEL-RELATED

HOMEOBOX genes in early development of leaves in Arabidopsis.

Plant Cell 24:519–535.

Nakata M, Okada K. 2013. The leaf adaxial-abaxial boundary and

lamina growth. Plants 2:174–202.

Nardmann J, Ji J, Werr W, Scanlon MJ. 2004. The maize duplicated

genes narrow sheath1 and narrow sheath2 encodes a conserved

homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839.

Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink

R, Capone R, Müller KJ, Bossinger G, Rohde W, Salamini F. 2000.

Genetics of mutations affecting the development of a barley floral

bract. Genetics 154:1335–1346.

Sakuma S, Salomon B, Komatsuda T. 2011. The domestication

syndrome genes responsible for the major changes in plant form in

the Triticeae crops. Plant and Cell Physiology 52:738–749.

Sato K, Nankaku N, Takeda K. 2009. A high-density transcript linkage

map of barley derived from a single population. Heredity 103:110–

117.

Scanlon MJ. 2000. NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 127:4573–4585.

Scanlon MJ, Chen KD, McKnight IV CC. 2000. The narrow sheath

duplicate gene: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development. Genetics

155:1379–1389.

Scanlon MJ, Freeling M. 1997. Clonal sectors reveal that a specific

meristematic domain is not utilized in the maize mutant narrow

sheath. Developmental Biology 182:52–66.

Scanlon MJ, Freeling M. 1998. The narrow sheath leaf domain: a genetic tool used to reveal developmental homologies among modified

maize organs. Plant Journal 13:547–561.

Scanlon MJ, Schneeberger RG, Freeling M. 1996. The maize mutant

narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122:1683–1691.

Stecher G, Tamura K, Kumar S. 2020. Molecular evolutionary genetics

analysis (MEGA) for macOS. Molecular Biology and Evolution.

doi:10.1093/molbev/msz312.

Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang

Y, Sumner L, Ratet P, McHale NA, Madueño F, Mysore KS. 2011.

STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell

23:2125–2142.

Taketa S, Yuo T, Sakurai Y, Miyake S, Ichii M. 2011. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on

barley chromosome 7H. Breed Science 61:80–85.

Taketa S, Yuo T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N,

Larroque O, Jobling SA. 2012. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in

(1,3,1,4)-β-D-glucan biosynthesis. Journal of Experimental Botany

63:381–392.

Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats

T. 2009. Differential recruitment of WOX transcription factors for

lateral development and organ fusion in Petunia and Arabidopsis.

Plant Cell 21:2269–2283.

von Bothmer R, Jacobsen N. 1985. Origin, taxonomy and related species. In: Rasmussen DC, ed. Barley. Monographs in agronomy, Vol.

26. Madison, WI: American Society of Agronomy, 19–56.

Downloaded from https://academic.oup.com/aobpla/article/14/3/plac019/6581466 by Kyoto University user on 09 November 2022

All data used for analyses are provided in the accompanying

Excel file as Supporting Information.

AoB PLANTS, 2022, Vol. 14, No. 3

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Yoshikawa et al. – Functional differentiation of WOX3 genes in barley

Yamaguchi T, Yano S, Tsukaya H. 2010. Genetic framework for flattened

leaf blade formation in unifacial leaves of Juncus prismatocarpus.

Plant Cell 22:2141–2155.

Yoshikawa T, Tanaka SY, Masumoto Y, Nobori N, Ishii H, Hibara K,

Itoh J, Tanisaka T, Taketa S. 2016. Barley NARROW LEAFED

DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3

(WOX3) regulates the marginal development of lateral organs.

Breed Science 66:416–424.

Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K,

Ichii M, Jobling SA, Taketa S. 2012. A SHORT INTERNODES

(SHI) family transcription factor gene regulates awn elongation

13

and pistil morphology in barley. Journal of Experimental Botany

63:5223–5232.

Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. 2020. UF, a WOX gene,

regulates a novel phenotype of un-fused flower in tomato. Plant

Science 297:110523.

Zhang H, Wu K, Wang Y, Peng Y, Hu F, Wen L, Han B, Qian Q, Teng

S. 2012. A WUSCHEL-like homeobox gene, OsWOX3B responses

to NUDA/GL-1 locus in rice. Rice 5:30.

Zhang X, Zong J, Liu J, Yin J, Zhang D. 2010. Genome-wide analysis of

WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.

Journal of Integrative Plant Biology 52:1016–1026.

Downloaded from https://academic.oup.com/aobpla/article/14/3/plac019/6581466 by Kyoto University user on 09 November 2022

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る