リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ancient evolutionary history of human papillomavirus type 16, 18 and 58 variants prevalent exclusively in Japan (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ancient evolutionary history of human papillomavirus type 16, 18 and 58 variants prevalent exclusively in Japan (本文)

田中, 恒成 慶應義塾大学

2022.09.05

概要

Human papillomavirus (HPV) is a sexually transmitted virus with an approximately 8-kilo base DNA genome, which establishes long-term persistent infection in anogenital tissues. High levels of genetic variations, including viral genotypes and intra-type variants, have been described for HPV genomes, together with geographical differences in the distribution of genotypes and variants. Here, by employing a maximum likelihood method, we performed phylogenetic analyses of the complete genome sequences of HPV16, HPV18 and HPV58 available from GenBank (n = 627, 146 and 157, respectively). We found several characteristic clusters that exclusively contain HPV genomes from Japan: two for HPV16 (sublineages A4 and A5), one for HPV18 (sublineage A1) and two for HPV58 (sublineages A1 and A2). Bayesian phylogenetic analyses of concatenated viral gene sequences showed that divergence of the most recent common ancestor of these Japan-specific clades was estimated to have occurred ~98,000 years before present (YBP) for HPV16 A4, ~39,000 YBP for HPV16 A5, ~38,000 YBP for HPV18 A1, ~26,000 for HPV58 A1 and ~25,000 YBP for HPV58 A2. This estimated timeframe for the divergence of the Japan-specific clades suggests that the introduction of these HPV variants into the Japanese archipelago dates back to at least ~25,000 YBP and provides a scenario of virus co-migration with ancestral Japanese populations from continental Asia during the Upper Paleolithic period.

関連論文

参考文献

1. Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (Suppl. 1), 2–23. [CrossRef]

2. Bzhalava, D.; Eklund, C.; Dillner, J. International standardization and classification of human papillomavirus types. Virology 2015, 476, 341–344. [CrossRef]

3. Burk, R.D.; Chen, Z.; Van Doorslaer, K. Human Papillomaviruses: Genetic Basis of Carcinogenicity. Public Health Genom. 2009, 12, 281–290. [CrossRef] [PubMed]

4. Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are 20 human papillomavirus types causing cervical cancer? J. Pathol. 2014, 234, 431–435. [CrossRef] [PubMed]

5. De Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010, 11, 1048–1056. [CrossRef]

6. McBride, A.A. Replication and Partitioning of Papillomavirus Genomes. Adv. Virus Res. 2008, 72, 155–205. [CrossRef]

7. Burk, R.D.; Harari, A.; Chen, Z. Human papillomavirus genome variants. Virology 2013, 445, 232–243. [CrossRef]

8. Mirabello, L.; Yeager, M.; Yu, K.; Clifford, G.M.; Xiao, Y.; Zhu, B.; Cullen, M.; Boland, J.F.; Wentzensen, N.; Nelson, C.; et al. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. Cell 2017, 170, 1164–1174.e6. [CrossRef] [PubMed]

9. Hirose, Y.; Onuki, M.; Tenjimbayashi, Y.; Mori, S.; Ishii, Y.; Takeuchi, T.; Tasaka, N.; Satoh, T.; Morisada, T.; Iwata, T.; et al. Within-Host Variations of Human Papillomavirus Reveal APOBEC Signature Mutagenesis in the Viral Genome. J. Virol. 2018, 92, e00017-18. [CrossRef] [PubMed]

10. Zhu, B.; Xiao, Y.; Yeager, M.; Clifford, G.; Wentzensen, N.; Cullen, M.; Boland, J.F.; Bass, S.; Steinberg, M.K.; Raine-Bennett, T.; et al. Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. Nat. Commun. 2020, 11, 886. [CrossRef] [PubMed]

11. Warren, C.; Van Doorslaer, K.; Pandey, A.; Espinosa, J.M.; Pyeon, D. Role of the host restriction factor APOBEC3 on papillomavirus evolution. Virus Evol. 2015, 1, vev015. [CrossRef]

12. Gottschling, M.; Stamatakis, A.; Nindl, I.; Stockfleth, E.; Alonso, Á.; Bravo, I.G. Multiple Evolutionary Mechanisms Drive Papillomavirus Diversification. Mol. Biol. Evol. 2007, 24, 1242–1258. [CrossRef] [PubMed]

13. Gottschling, M.; Göker, M.; Stamatakis, A.; Bininda-Emonds, O.R.; Nindl, I.; Bravo, I.G. Quantifying the Phylodynamic Forces Driving Papillomavirus Evolution. Mol. Biol. Evol. 2011, 28, 2101–2113. [CrossRef] [PubMed]

14. Larsen, B.B.; Cole, K.L.; Worobey, M. Ancient DNA provides evidence of 27,000-year-old papillomavirus infection and long-term codivergence with rodents. Virus Evol. 2018, 4, vey014. [CrossRef] [PubMed]

15. Shah, S.D.; Doorbar, J.; Goldstein, R.A. Analysis of Host–Parasite Incongruence in Papillomavirus Evolution Using Importance Sampling. Mol. Biol. Evol. 2010, 27, 1301–1314. [CrossRef]

16. Pimenoff, V.N.; De Oliveira, C.M.; Bravo, I.G. Transmission between Archaic and Modern Human Ancestors during the Evolution of the Oncogenic Human Papillomavirus 16. Mol. Biol. Evol. 2017, 34, 4–19. [CrossRef]

17. Chen, Z.; DeSalle, R.; Schiffman, M.; Herrero, R.; Wood, C.E.; Ruiz, J.C.; Clifford, G.M.; Chan, P.K.S.; Burk, R.D. Niche adaptation and viral transmission of human papillomaviruses from archaic hominins to modern humans. PLoS Pathog. 2018, 14, e1007352. [CrossRef]

18. Chen, Z.; Ho, W.C.S.; Boon, S.S.; Law, P.T.Y.; Chan, M.C.W.; DeSalle, R.; Burk, R.D.; Chan, P.K.S. Ancient Evolution and Dispersion of Human Papillomavirus 58 Variants. J. Virol. 2017, 91, e01285-17. [CrossRef]

19. Chen, Z.; Long, T.; Wong, P.Y.; Ho, W.C.S.; Burk, R.D.; Chan, P.K.S. Non-human Primate Papillomaviruses Share Similar Evolutionary Histories and Niche Adaptation as the Human Counterparts. Front. Microbiol. 2019, 10, 2093. [CrossRef]

20. D’Arc, M.; Moreira, F.R.R.; Dias, C.A.; Souza, A.R.; Seuánez, H.N.; Soares, M.A.; Tavares, M.C.H.; Santos, A.F.A. The characteriza- tion of two novel neotropical primate papillomaviruses supports the ancient within-species diversity model. Virus Evol. 2020, 6, veaa036. [CrossRef]

21. Hirose, Y.; Onuki, M.; Tenjimbayashi, Y.; Yamaguchi-Naka, M.; Mori, S.; Tasaka, N.; Satoh, T.; Morisada, T.; Iwata, T.; Kiyono, T.; et al. Whole-Genome Analysis of Human Papillomavirus Type 16 Prevalent in Japanese Women with or without Cervical Lesions. Viruses 2019, 11, 350. [CrossRef]

22. Tenjimbayashi, Y.; Onuki, M.; Hirose, Y.; Mori, S.; Ishii, Y.; Takeuchi, T.; Tasaka, N.; Satoh, T.; Morisada, T.; Iwata, T.; et al. Whole-genome analysis of human papillomavirus genotypes 52 and 58 isolated from Japanese women with cervical intraepithelial neoplasia and invasive cervical cancer. Infect. Agents Cancer 2017, 12, 44. [CrossRef]

23. Yamaguchi-Naka, M.; Onuki, M.; Tenjimbayashi, Y.; Hirose, Y.; Tasaka, N.; Satoh, T.; Morisada, T.; Iwata, T.; Sekizawa, A.; Matsumoto, K.; et al. Molecular epidemiology of human papillomavirus 18 infections in Japanese Women. Infect. Genet. Evol. 2020, 83, 104345. [CrossRef] [PubMed]

24. Jinam, T.A.; Kanzawa-Kiriyama, H.; Saitou, N. Human genetic diversity in the Japanese Archipelago: Dual structure and beyond. Genes Genet. Syst. 2015, 90, 147–152. [CrossRef] [PubMed]

25. Kaifu, Y.; Fujita, M. Fossil record of early modern humans in East Asia. Quat. Int. 2012, 248, 2–11. [CrossRef]

26. Japanese Archipelago Human Population Genetics Consortium. The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. J. Hum. Genet. 2012, 57, 787–795. [CrossRef]

27. Wang, C.-C.; Yeh, H.-Y.; Popov, A.N.; Zhang, H.-Q.; Matsumura, H.; Sirak, K.; Cheronet, O.; Kovalev, A.; Rohland, N.; Kim, A.M.; et al. Genomic insights into the formation of human populations in East Asia. Nature 2021, 591, 413–419. [CrossRef]

28. Kanzawa-Kiriyama, H.; Kryukov, K.; Jinam, T.A.; Hosomichi, K.; Saso, A.; Suwa, G.; Ueda, S.; Yoneda, M.; Tajima, A.; Shinoda, K.-I.; et al. A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan. J. Hum. Genet. 2017, 62, 213–221. [CrossRef]

29. Kanzawa-Kiriyama, H.; Jinam, T.A.; Kawai, Y.; Sato, T.; Hosomichi, K.; Tajima, A.; Adachi, N.; Matsumura, H.; Kryukov, K.; Saitou, N.; et al. Late Jomon male and female genome sequences from the Funadomari site in Hokkaido, Japan. Anthr. Sci. 2019, 127, 83–108. [CrossRef]

30. Hanihara, K. Dual structure model for the population history of the Japanese. Jpn. Rev. 1991, 2, 1–33.

31. Omoto, K.; Saitou, N. Genetic origins of the Japanese: A partial support for the dual structure hypothesis. Am. J. Phys. Anthropol. 1997, 102, 437–446. [CrossRef]

32. McBride, A.A. The papillomavirus E2 proteins. Virology 2013, 445, 57–79. [CrossRef]

33. Murakami, I.; Egawa, N.; Griffin, H.; Yin, W.; Kranjec, C.; Nakahara, T.; Kiyono, T.; Doorbar, J. Roles for E1-independent replication and E6-mediated p53 degradation during low-risk and high-risk human papillomavirus genome maintenance. PLoS Pathog. 2019, 15, e1007755. [CrossRef]

34. Lehtinen, M.; Hibma, M.; Stellato, G.; Kuoppala, T.; Paavonen, J. Human T Helper Cell Epitopes Overlap B Cell and Putative Cytotoxic T Cell Epitopes in the E2 Protein of Human Papillomavirus Type 16. Biochem. Biophys. Res. Commun. 1995, 209, 541–546. [CrossRef] [PubMed]

35. Kónya, J.; Geijersstam, V.A.; Yuan, F.; Dillner, J.; Stuber, G.; Eklund, C. Identification of a cytotoxic T-lymphocyte epitope in the human papillomavirus type 16 E2 protein. J. Gen. Virol. 1997, 78 Pt 10, 2615–2620. [CrossRef] [PubMed]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る