リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Integrated public transportation system with shared autonomous vehicles and fixed-route transits: Dynamic traffic assignment-based model with multi-objective optimization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Integrated public transportation system with shared autonomous vehicles and fixed-route transits: Dynamic traffic assignment-based model with multi-objective optimization

丸山 稜太 瀬尾 亨 Ryota Maruyama Toru Seo 東京工業大学 DOI:https://doi.org/10.1007/s13177-022-00340-2

2023.01.17

概要

The shared autonomous vehicle (SAV) system is considered as an efficient transportation mode in the future. In the literature, optimization of SAV systems has been extensively studied. However, SAV systems could bring greater social benefits if we could use them with existing public transportation systems, such as bus rapid transit (BRT), in an integrated manner. This study proposes a model of SAV-BRT system, an integrated system that takes advantage of the flexibility of SAVs and the mass transport capability of BRT. The proposed model is based on a dynamic traffic assignment model so that it captures important features of SAV-BRT system, such as endogenous traffic congestion, detour and waiting of SAVs, BRT’s dynamic scheduling. The model is formulated as a multi-objective optimization problem so that trade-off relations regarding the system’s performance can be explicitly analyzed. The behavior of the model is investigated by conducting numerical experiments based on actual travel data obtained from an urban area in Japan. As a result, we confirmed that the model behaves reasonably, and several insights on SAV-BRT systems have been obtained.

Keywords Automated vehicle · Bus rapid transit ·Aggregated vehicle routing and passenger pickup and delivery with time window · Infrastructure design

この論文で使われている画像

参考文献

1.1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)

1.2. Aiko, S., Itabashi, R., Seo, T., Kusakabe, T., Asakura, Y.: Social benefit of optimal ride-share transport with given travelers’ activity patterns. Transportation Research Procedia 27, 261–269 (2017)

1.3. Aiko, S., Thaithatkul, P., Asakura, Y.: Incorporating user preference into optimal vehicle routing problem of integrated sharing transport system. Asian Transport Studies 5(1), 98–116 (2018)

1.4. Docherty, I., Marsden, G., Anable, J.: The governance of smart mobility. Transp. Res. A Policy Pract. 115, 114–125 (2018)

1.5. Ehrgott, M.: Multicriteria Optimization. Springer-Verlag Berlin Heidelberg (2005) International Journal of Intelligent Transportation Systems Research

.6. Fagnant, D.J., Kockelman, K.M.: Dynamic ride-sharing and optimal fleet sizing for a system of shared autonomous vehicles. In: Transportation research board 94th annual meeting (2015)

1.7. Gurobi Optimization, LLC : Gurobi optimizer reference manual. http://www.gurobi.com (2020)

1.8. Gurumurthy, K.M., Kockelman, K.M., Zuniga-Garcia, N.: First-mile-last-mile collector-distributor system using shared autonomous mobility. Transportation Research Record: Jour- nal of the Transportation Research Board 2674(10), 638–647 (2020)

1.9. Levin, M.W.: Congestion-aware system optimal route choice for shared autonomous vehicles. Transportation Research Part C: Emerging Technologies 82, 229–247 (2017)

1.10. Levin, M.W., Odell, M., Samarasena, S., Schwartz, A.: A linear program for optimal integration of shared autonomous vehicles with public transit. Transportation Research Part C: Emerging Technologies 109, 267–288 (2019)

1.11. Maruyama, R., Seo, T.: Dynamic user optimal model for shared autonomous vehicles system: development and systematic comparison with social optimal model. IEEE 25th International Conference on Intelligent Transportation Systems (2022)

1.12. Mitani, T., Thaithatkul, P., Kusakabe, T.: The method of arrangement of socio-economic data for the activity-based simulation. Proceedings of Infrastructure Planning, vol. 60. (in Japanese) (2019)

1.13. Narayanan, S., Chaniotakis, E., Antoniou, C.: Shared autonomous vehicle services: A comprehensive review. Transportation Research Part C: Emerging Technologies 111, 255–293 (2020)

1.14. Pinto, H.K., Hyland, M.F., Mahmassani, H.S., Verbas, I.O.: Joint design of multimodal transit networks and shared autonomous mobility fleets. Transportation Research Part C: Emerging Technologies 113, 2–20 (2020)

1.15. Regue, R., Masoud, N., Recker, W.: Car2work: shared mobility concept to connect commuters with workplaces. Transp. Res. Rec. 2542(1), 102–110 (2016)

1.16. Ruch, C., Lu, C., Sieber, L., Frazzoli, E.: Quantifying the efficiency of ride sharing. IEEE Transactions on Intelligent Transportation Systems (2020)

1.17. Seo, T., Asakura, Y.: Multi-objective linear optimization problem for strategic planning of shared autonomous vehicle operation and infrastructure design. IEEE Trans. Intell. Transp. Syst. 23, 3816–3828 (2022). https://doi.org/10.1109/TITS.2021.3071512

1.18. Shan, A., Hoang, N.H., An, K., Vu, H.L.: A framework for railway transit network design with first-mile shared autonomous vehicles. Transportation Research Part C: Emerging Technologies 130, 103223 (2021)

1.19. Sumitomo Electric System Solutions Co., Ltd.: The augmented national digital road map data base. https://www.seiss.co.jp/ms/ gis/map db.html (accessed 2022-05-18)

1.20. Tafreshian, A., Masoud, N., Yin, Y.: Frontiers in service science: ride matching for peer-to-peer ride sharing: a review and future directions. Serv. Sci. 12(2-3), 44–60 (2020)

1.21. Tokyo Metropolitan Area Transportation Planning Council: The sixth person trip survey in Tokyo Metropolitan Area. https://www. tokyo-pt.jp/special 6th (accessed 2022-05-18)

1.22. Tuzun, D., Burke, L.I.: A two-phase tabu search approach to the location routing problem. Eur. J. Oper. Res. 116(1), 87–99 (1999)

1.23. Vanderbeck, F., Savelsbergh, M.W.: A generic view of dantzig– wolfe decomposition in mixed integer programming. Oper. Res. Lett. 34(3), 296–306 (2006)

1.24. Wen, J., Chen, Y.X., Nassir, N., Zhao, J.: Transit-oriented autonomous vehicle operation with integrated demand-supply interaction. Transportation Research Part C: Emerging Technolo- gies 97, 216–234 (2018)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る