リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「AN ENTROPY PROBLEM OF THE α-CONTINUED FRACTION MAPS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

AN ENTROPY PROBLEM OF THE α-CONTINUED FRACTION MAPS

Nakada, Hitoshi 大阪大学 DOI:10.18910/87487

2022.04

概要

We show that the entropy of the α-continued fraction map w.r.t the absolutely continuous invariant probability measure is strictly less than that of the nearest integer continued fraction map when 0 < α < (3−√5) / 2 . This answers a question by C. Kraaikamp, T. A. Schmidt, and W. Steiner (2012). To prove this result we make use of the notion of the geodesic continued fractions introduced by A. F. Beardon, M. Hockman, and I. Short (2012).

参考文献

[1] F.P. Boca and C. Merriman: α-expansions with odd partial quotients, J. Number Theory 199 (2019), 322– 341.

[2] L. Breiman: The individual ergodic theorem of information theory, Ann. Math. Statist. 28 (1957), 809–811.

[3] A.F. Beardon, M. Hockman and I. Short: Geodesic continued fractions, Michigan Math. J. 61 (2012), 133–150.

[4] W. Bosma, H. Jager and F. Wiedijk: Some metrical observations on the approximation by continued fractions, Nederi. Akad. Wetensch. Indag. Math. 45 (1983), 281–299.

[5] C. Carminati, N.D.S. Langeveld and W. Steiner: Tanaka-Ito α-continued fractions and matching, Nonlinearity 34 (2021), 3565–3582.

[6] C. Carminati and G. Tiozzo: A canonical thickening of Q and the entropy of α-continued fraction transformations, Ergodic. Theory Dynam. Systems 32 (2012), 1249–1269.

[7] C. Carminati and G. Tiozzo: Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), 1049–1070.

[8] K.L. Chung: A note on the ergodic theorem of information theory, Ann. Math. Statist. 32 (1961), 612–614.

[9] K. Dajani, C. Kraaikamp and W. Steiner: Metrical Theory for α-Rosen fractions, J. Eur. Math. Soc. 11 (2009), 1259–1283

[10] S. Katok and I. Ugarcovici: Structure of attractors for (a, b)-continued fractions transformations, J. Mod. Dynam. 4 (2010), 637–691.

[11] C. Kraaikamp: A new class of continued fraction expansions, Acta Arith. 57 (1991), 1–39.

[12] C. Kraaikamp, T.A. Schmidt and W. Steiner: Natural extensions and entropy of α-continued fractions, Nonlinearity 25 (2012), 2207–2243.

[13] C. Kraaikamp, T.A. Schmidt and I. Smeets: Natural extensions for α-Rosen continued fractions, J. Math. Soc. Japan 62 (2010), 649–671.

[14] L. Luzzi and S. Marmi: On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst. 20 (2008), 673–711.

[15] P. Moussa, A. Cassa and S. Marmi: Continued fractions and Brjuno functions, J. Comput. Appl. Math. 105 (1999), 403–415.

[16] H. Nakada: Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426.

[17] H. Nakada: On the Lenstra constant associated to the Rosen continued fractions, J. Eur. Math. Soc. 12 (2010), 55–70.

[18] H. Nakada and R. Natsui: The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity 21 (2008), 1207–1225.

[19] H. Nakada and W. Steiner: On the ergodic theory of Tanaka-Ito type α-continued fractions, Tokyo J. Math. 44 (2021), 451–465.

[20] D. Rosen and T.A. Schmidt: Hecke groups and continued fractions, Bull. Austral. Math. Soc. 46 (1992), 459–474.

[21] I. Short and M. Walker: Geodesic Rosen continued fractions, Q. J. Math. 67 (2016), 519–549.

[22] G. Tiozzo: The entropy of Nakada’s α-continued fractions: analytical results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 1009–1037.

[23] S. Tanaka and S. Ito: On a family of continued-fraction transformations and their ergodic properties, Tokyo J. Math. 4 (1981), 153–175.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る