リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「電気自動車の充電アプリケーションのための電界放出低減による容量性電力伝送」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

電気自動車の充電アプリケーションのための電界放出低減による容量性電力伝送

アーム, ムハラム AAM, MUHARAM 九州大学

2020.09.25

概要

Wireless power transfer (WPT) is a new method to transfer the power between sources and mobile device/s without the use of cables. WPT promising an energy sustainability in many applications offers a simple and effective way to deliver energy. Almost all the previous WPT researches have conducted and used inductive power transfer (IPT) technology. This uses magnetic fields between two or more coils to deliver the energy. In electric vehicle applications, many researchers are trying to design a WPT system to achieve a high-efficiency charging. Since a common known its limitation, such unable to work well where a metal barrier placed between coupling interface and issue related to electromagnetic interference (EMI) appears in the IPT system. Capacitive power transfer (CPT) appears as an alternative to solve this problem. Rather than use magnetic induction between the coupler, CPT apply an electric field resonant (EFR) to deliver the power. With its flexibility in form, lightly in weight, and simplicity in structure, CPT is the future of wireless power.

Since CPT is not yet mature in technology, an improvement of its design challenges need to be addressed. Low power abilities, radiation of electric field (EF) and system scaling are three main issues for CPT. Higher power abilities are only achieved with a large coupling area or a small gap between the coupler. A trade-off is associated with the other two issues, EF strength and system scaling, which conveys to a tinny module and system safety.

Chapter 1 presents an introduction and overview of the capacitive power transfer system, the research scopes and objectives are included. More, this chapter describes a methodology that used in the study. In addition, several work contributions and publications related to the research are provided.

Chapter 2 starts by giving a brief history of WPT innovation, which ranges over a century. How an EV charging technology from the common powered by line to the present wireless power transfer. There is a brief discussion of the merits and demerits of each technology. A CPT basic circuit and fundamental theory is introduced.

Chapter 3 introduces a new approach for reducing EF in CPT system by implementing a single-wire capacitive coupling interface. The system is analyzed to study the availability of powering the EV wirelessly with considers the radiation of EF surround the interface. The stray voltage appearing to the chassis of EV is also investigated.

Chapter 4 introduces a new term of CPT technology called a shielded-capacitive power transfer, S-CPT. By utilizing an extra conductive plate behind the coupling interface of the conventional CPT system, the new topology has been studied in detail to prove the concept. A simplified design is introduced. An investigation related to the EF emission has been analyzed. A Simulation and experimental research have been verified by the proposed system.

Chapter 5 introduces a scaling factor and design consideration of S-CPT in order to optimize a coupling structure parameter following the design and requirement. An analysis of the inductor series resistance is included in the calculation of total power loss of the S-CPT system. The relationship between the shield coupler gap, the couplers distance, the size of conductive plate, and delivered power has been analyzed and described in this chapter. A recommendation in designing the S-CPT system for scaling consideration is presented.

Chapter 6 introduces a development of Class-E RF inverter with capability of 50 W 6.78 MHz and 300 W 13.56 MHz high frequency power amplifier. GaN MOSFET is used as a switching network provides a high frequency operation of the power amplifier. A power loss of inverter with and without transformer is also analysed. SPICE simulation software is used to define the parameters and to calculate the power loss. Two Class-E RF inverter has been developed, implemented and tested to deliver a power wirelessly to the proposed S-CPT system.

Chapter 7 presents the outcomes of the research work, its contributions and concludes the thesis. It also identifies future research opportunities.

Three main challenges and design guideline for system scaling are introduced for shielding improvement in CPT system. In addition, a new term of “Shielded-CPT” is proposed. Firstly, the EF radiation surround the coupling interface is high consider delivers higher power such for EV charging. This thesis proposes a new approach of coupling interface with shielding effect improved by a single coupling structure. An analysis has been performed on the circuit model of capacitive coupling interface. Secondly, other new coupling interface with shield was presented. An improvement regardless of the ground stability on the shielding plate was proposed. Finite element analysis and EF radiation strength analysis, completed with a Spice transient circuit simulation were conducted. Thirdly, simplicity design of Class-E RF GaN MOSFET power amplifier with high power high frequency operation was offered. Design and fabrication of power inverter was implemented to the CPT system. An analysis and extensive experimental results show capability of delivering power with a high efficiency.

The final content of this thesis is design guidelines of shielded-CPT system scaling. A detail mathematical analysis with comprehensive circuit model breakdown was presented. Hardware implementation for validate the design procedure was provided. This guideline covers a wide range of design factor analysis include an inductor power loss, load variations behavior, equivalent series resistance behavior, impedance ratio and power transfer analysis. The result shows significant match between hardware implementation and acquired design factor.

この論文で使われている画像

参考文献

1. Funato, H.; Kobayashi, H.; Kitabayashi, T. Analysis of transfer power of capacitive power transfer system. In Proceedings of the 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS); IEEE: Kitakyushu, Japan, 2013; pp. 1015– 1020.

2. Yusop, Y.; Saat, S.; Ghani, Z.; Husin, H.; Nguang, S.K. Capacitive power transfer with impedance matching network. In Proceedings of the 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE: Malacca City, Malaysia, 2016; pp. 124–129.

3. Brown, W.C. The History of Power Transmission by Radio Waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242, doi:10.1109/TMTT.1984.1132833.

4. Tesla, N. Wireless Telegraphy and Telephony. R. United Serv. Institution. J. 1912, 56, 1121–1130, doi:10.1080/03071841209417841.

5. Brown, W.C. A survey of the elements of power transmission by microwave beam. In Proceedings of the IRE International Conference; 1961; pp. 93–105.

6. Garnica, J.; Chinga, R.A.; Lin, J. Wireless power transmission: From far field to near field. Proc. IEEE 2013, 101, 1321–1331, doi:10.1109/JPROC.2013.2251411.

7. Brown, W.C. The solar power satellite as a source of base load electrical power. IEEE Trans. Power Appar. Syst. 1981, 1, 41–42.

8. Li, J.L.-W. Wireless power transmission: State-of-the-arts in technologies and potential applications. Microw. Conf. Proc. (APMC), 2011 Asia-Pacific 2011, 86–89.

9. Borges Carvalho, N.; Georgiadis, A.; Costanzo, A.; Rogier, H.; Collado, A.; Garcia, J.A.; Lucyszyn, S.; Mezzanotte, P.; Kracek, J.; Masotti, D.; et al. Wireless power transmission: R&D activities within europe. IEEE Trans. Microw. Theory Tech. 2014, 62, 1031–1045, doi:10.1109/TMTT.2014.2303420.

10. Matsumoto, H. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw. Mag. 2002, 3, 36–45, doi:10.1109/MMW.2002.1145674.

11. Schlesak, J.J.; Alden, A.; Ohno, T. A microwave powered high altitude platform. 1988., IEEE MTT-S Int. Microw. Symp. Dig. 283–286.

12. NASA NASA Research Team Successfully Flies First Laser-Powered Aircraft Available online: https://www.nasa.gov/vision/earth/improvingflight/laser_plane.html (accessed on Jun 20, 2020).

13. Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless power transfer via strongly coupled magnetic resonances. Science (80-. ). 2007, 317, 83–86, doi:10.1126/science.1143254.

14. M Leblanc M. Hutin M Transformer system for electric railways 1894, 4.

15. Muharam, A.; Pratama, M.; Ismail, K.; Kaleg, S.; Kurnia, M.R.M.R.; Hapid, A. A development of smart metering infrastructure for Electric Vehicle charging point. In Proceedings of the 2016 International Conference on Sustainable Energy Engineering and Application (ICSEEA); IEEE, 2016; pp. 27–33.

16. Jiang, T.; Putrus, G.; Gao, Z.; Conti, M.; McDonald, S.; Lacey, G. Development of a decentralized smart charge controller for electric vehicles. Int. J. Electr. Power Energy Syst. 2014, 61, 355–370, doi:10.1016/j.ijepes.2014.03.023.

17. Chynoweth, J.; Ching-Yen Chung; Qiu, C.; Chu, P.; Gadh, R. Smart electric vehicle charging infrastructure overview. In Proceedings of the Innovative Smart Grid Technology (ISGT); IEEE, 2014; pp. 1–5.

18. Raju, S.; Wu, R.; Chan, M.; Yue, C.P. Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans. Power Electron. 2014, 29, doi:10.1109/TPEL.2013.2253334.

19. Hofmeister, B. Electric Vehicle Charging Infrastructure: Navigating Choices Regarding Regulation, Subsidy, and Competition in a Complex Regulatory Environment. J. ENERGY Environ. LAW 2014, Winter, 42–71.

20. Bossche, P. Van Den CHAPTER TWENTY - Electric Vehicle Charging Infrastructure; Elsevier B.V, 2010; ISBN 9780444535658.

21. Dale Hill, Michael Walker, Joshua Goldman, J.H. Charging stations for electric vehicles. 2012.

22. Zhang, L.; Brown, T.; Samuelsen, S. Evaluation of charging infrastructure requirements and operating costs for plug-in electric vehicles. J. Power Sources 2013, 240, 515–524, doi:10.1016/j.jpowsour.2013.04.048.

23. Caleno, F.; A, E.D.S. Enel EV Recharging Infrastructure. 2014.

24. Mayfield, D. Siting Electric Vehicle Charging Stations. Sustain. Transp. Strateg. 2012.

25. Faria, R.; Moura, P.; Delgado, J.; de Almeida, A.T. Managing the Charging of Electrical Vehicles: Impacts on the Electrical Grid and on the Environment. IEEE Intell. Transp. Syst. Mag. 2014, 6, 54–65, doi:10.1109/MITS.2014.2323437.

26. Transportation, E.; Corporation, E. Electric Vehicle Charging Infrastructure Deployment Guidelines British Columbia Sponsored by. 2009.

27. Sustainable Energy Authority of Ireland A BEAMA practical guide. 2015, pp. 1–40.

28. U.S. Department of Energy Plug-in Electric Vehicle Charging Options and Times Vary Considerably Available online: https://www.energy.gov/eere/vehicles/fact-919-april- 4-2016-plug-electric-vehicle-charging-options-and-times-vary.

29. Tesla In the middle of the drive Available online: https://www.tesla.com/ja_JP/findusbounds=46.69126782510468%2C152.6669865%2C29.39700158094679%2C110.47948650000001&zoom=6&filters=destination charger%2Csupercharger&search=Japan (accessed on Jun 20, 2020).

30. U.S. Department of Energy Developing Infrastructure to Charge Plug-In Electric Vehicles Available online: https://afdc.energy.gov/fuels/electricity_infrastructure.html#level2.

31. Industryarc.com Wireless Charging Market - Forecast (2020 - 2025);

32. Gao, X.; Zhou, H.; Hu, W.; Deng, Q.; Liu, G.-P.; Lai, J. Capacitive power transfer through virtual self-capacitance route. IET Power Electron. 2018, 11, 1110–1118, doi:10.1049/iet-pel.2017.0629.

33. Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.C.C. An Inductive and Capacitive Combined Wireless Power Transfer System with LC-Compensated Topology. IEEE Trans. Power Electron. 2016, 31, 8471–8482, doi:10.1109/TPEL.2016.2519903.

34. Mostafa, T.M.; Muharam, A.; Hattori, R. Wireless battery charging system for drones via capacitive power transfer. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW); IEEE: Chongqing, China, 2017; Vol. 3, pp. 1–6.

35. Muharam, A.; Mostafa, T.M.; Hattori, R. Design of power receiving side in wireless charging system for UAV application. In Proceedings of the 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA); IEEE: Jakarta, Indonesia, 2017; pp. 133–139.

36. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C. A 4-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Applications. IEEE Trans. Power Electron. 2016, 31, 1–1, doi:10.1109/TPEL.2016.2520963.

37. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C. A large air-gap capacitive power transfer system with a 4-plate capacitive coupler structure for electric vehicle charging applications. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC); IEEE, 2016; Vol. 2016-May, pp. 1726–1730.

38. Miller, J.M.; Onar, O.C.; Chinthavali, M. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 147–162, doi:10.1109/JESTPE.2014.2382569.

39. Zakerian, A.; Vaez-Zadeh, S.; Babaki, A. A Dynamic WPT System with High Efficiency and High Power Factor for Electric Vehicles. IEEE Trans. Power Electron. 2020, 35, 6732– 6740, doi:10.1109/TPEL.2019.2957294.

40. Rahim, A. High Power Capacitive Power Transfer for Electric Vehicle Charging Applications. 1–35.

41. Scipioni, R.; Jørgensen, P.S.; Ngo, D.-T.; Simonsen, S.B.; Liu, Z.; Yakal-Kremski, K.J.; Wang, H.; Hjelm, J.; Norby, P.; Barnett, S.A.; et al. Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes. J. Power Sources 2016, 307, 259–269, doi:http://dx.doi.org/10.1016/j.jpowsour.2015.12.119.

42. Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17, doi:10.1109/JESTPE.2014.2319453.

43. Dai, J.; Ludois, D.C. Capacitive Power Transfer Through a Conformal Bumper for Electric Vehicle Charging. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1015–1025, doi:10.1109/JESTPE.2015.2505622.

44. Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014, doi:10.1109/TPEL.2015.2446891.

45. Pickelsimer, M.; Tolbert, L.; Ozpineci, B.; Miller, J.M. Simulation of a wireless power transfer system for electric vehicles with power factor correction. 2012 IEEE Int. Electr. Veh. Conf. 2012, 1–6, doi:10.1109/IEVC.2012.6183246.

46. Sheng, M.S.; Wilson, D.; Sharp, B. Inductive Power Transfer Charging Infrastructure for Electric Vehicles : A New Zealand Case Study. 1998.

47. Toshiba; Akihisa, M.; Fumiaki, T.; Hiraoki, I. 7 kW Wireless Power Transmission Technology for EV Charging; 2014;

48. Rozario, D.; Azeez, N.A.; Williamson, S.S. Analysis and design of coupling capacitors for contactless capacitive power transfer systems. 2016 IEEE Transp. Electrif. Conf. Expo, ITEC 2016 2016, doi:10.1109/ITEC.2016.7520244.

49. Gozalvez, J. First wireless electric vehicle charging trial. IEEE Veh. Technol. Mag. 2012, 7, 10–17.

50. Ho, S.L.; Wang, J.; Fu, W.N.; Sun, M. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. In Proceedings of the IEEE Transactions on Magnetics; 2011; Vol. 47, pp. 1522–1525.

51. Lukic, S.; Pantic, Z. Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles. IEEE Electrif. Mag. 2013, 1, 57–64.

52. Throngnumchai, K.; Hanamura, A.; Naruse, Y.; Takeda, K. Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles. World Electr. Veh. J. 2013, 6, 848–857, doi:10.1109/EVS.2013.6914937.

53. Trung, N.K. 13.56 MHz high power and high efficiency inverter for dynamic EV charging systems, Shibaura Institute of Technology, 2016.

54. Musavi, F.; Eberle, W. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electron. 2014, 7, 60–66, doi:10.1049/iet- pel.2013.0047.

55. Sakai, N.; Itokazu, D.; Suzuki, Y.; Sakihara, S.; Ohira, T. One-kilowatt capacitive Power Transfer via wheels of a compact Electric Vehicle. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference (WPTC); IEEE, 2016; pp. 1–3.

56. Ning, P.; Miller, J.M.; Onar, O.C.; White, C.P. A compact wireless charging system for electric vehicles. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013; 2013; pp. 3629–3634.

57. Rim, C.T.; Mi, C. Capacitive Power Transfer for EV Chargers Coupler. In Wireless Power Transfer for Electric Vehicles and Mobile Devices; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 435–455.

58. Chen, H.X.; Liu, Z.Z.; Zeng, H.; Qu, X.D.; Hou, Y.J. Study on High Efficient Electric Vehicle Wireless Charging System. IOP Conf. Ser. Earth Environ. Sci. 2016, 40, 012009, doi:10.1088/1755-1315/40/1/012009.

59. Mi, C. High power capacitive power transfer for electric vehicle charging applications. In Proceedings of the 2015 6th International Conference on Power Electronics Systems and Applications (PESA); IEEE: Hong Kong, China, 2015; pp. 1–4.

60. Lu, F. High Power Capacitive Power Transfer for Electric Vehicle Charging Applications by; 2017; ISBN 0000000205.

61. Elekhtiar, A.; Eltagy, L.; Zamzam, T.; Massoud, A. Design of a capacitive power transfer system for charging of electric vehicles. In Proceedings of the 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE); IEEE, 2018; pp. 150–155.

62. Li, C.; Zhao, X.; Liao, C.; Wang, L. A graphical analysis on compensation designs of large- gap CPT systems for EV charging applications. CES Trans. Electr. Mach. Syst. 2018, 2, 232– 242, doi:10.30941/CESTEMS.2018.00029.

63. Luo, B.; Long, T.; Guo, L.; Dai, R.; Mai, R.; He, Z. Analysis and Design of Inductive and Capacitive Hybrid Wireless Power Transfer System for Railway Application. IEEE Trans. Ind. Appl. 2020, 56, 3034–3042, doi:10.1109/TIA.2020.2979110.

64. Vu, V.-B.; Bin Mohamad Kamal, L.; Tay, J.; Pickert, V.; Dahidah, M.; Logenthiran, T.; Phan, V.-T. A multi-output capacitive charger for electric vehicles. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE); IEEE, 2017; pp. 565–569.

65. Li, S.; Liu, Z.; Zhao, H.; Zhu, L.; Shuai, C.; Chen, Z. Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans. Ind. Electron. 2016, 63, 6602–6612, doi:10.1109/TIE.2016.2577625.

66. Onar, O. ORNL Surges Forward With 20-kilowatt Wireless Charging for Electric Vehicles; Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2016;

67. Covic, G.A.; Boys, J.T. Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41, doi:10.1109/JESTPE.2013.2264473.

68. Xu, Z.; Gao, C. Graphene fiber: a new trend in carbon fibers. Mater. Today 2015, 18, 480– 492, doi:http://dx.doi.org/10.1016/j.mattod.2015.06.009.

69. Gao, Y.; Farley, K.B.; Tse, Z.T.H. Investigating safety issues related to electric vehicle wireless charging technology. In Proceedings of the 2014 IEEE Transportation Electrification Conference and Expo (ITEC); IEEE, 2014; pp. 1–4.

70. Gao, Y.; Ginart, A.; Farley, K.B.; Tse, Z.T.H. Misalignment effect on efficiency of wireless power transfer for electric vehicles. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC); IEEE, 2016; pp. 3526–3528.

71. Lu, F.; Zhang, H.; Mi, C. A Two-Plate Capacitive Wireless Power Transfer System for Electric Vehicle Charging Applications. IEEE Trans. Power Electron. 2018, 33, 964–969, doi:10.1109/TPEL.2017.2735365.

72. Sinha, S.; Regensburger, B.; Kumar, A.; Afridi, K.K. A Multi-MHz Large Air-gap Capacitive Wireless Power Transfer System Utilizing an Active Variable Reactance Rectifier Suitable for Dynamic Electric Vehicle Charging. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE); IEEE, 2019; pp. 5726–5732.

73. Regensburger, B.; Kumar, A.; Sinha, S.; Afridi, K. High-Performance 13.56-MHz Large Air- Gap Capacitive Wireless Power Transfer System for Electric Vehicle Charging. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL); IEEE, 2018; pp. 1–4.

74. Sakai, N.; Itokazu, D.; Suzuki, Y.; Sakihara, S.; Ohira, T. Single-seater vehicle prototype experiment powered by high frequency electric field on an asphalt-paved roadway. In Proceedings of the 2016 6th International Electric Drives Production Conference (EDPC); IEEE, 2016; pp. 101–104.

75. Toyohashi University of Technology Electrified Road Electric Vehicle (EVER) Available online: http://www.comm.ee.tut.ac.jp/we/ja/researches_7.html (accessed on Jun 20, 2020).

76. Masuda, M.; Kusunoki, M.; Obara, D.; Nakayama, Y.; Hamada, H.; Negami, S.; Kaizuka, K. Wireless power transfer via electric coupling. Furukawa Rev. 2013, 33–38.

77. Masuda, M. A high electric power supply to electric cars using the electric field resonance. Furukawa Rev. 2018, 23–31.

78. Gunji, D.; Hata, K.; Shimizu, O.; Imura, T.; Fujimoto, H. Feasibility Study on In-motion Wireless Power Transfer System Before Traffic Lights Section. In Proceedings of the 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW); IEEE, 2019; pp. 302–307.

79. International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524, doi:10.1097/HP.0000000000001210.

80. IEEE Standards Coordinating Committee 39 IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Std C95.1-2019 (Revision IEEE Std C95.1-2005/ Inc. IEEE Std C95.1-2019/Cor 1-2019) 2019, 312.

81. Kim, D.; Abu-Siada, A.; Sutinjo, A. State-of-the-art literature review of WPT: Current limitations and solutions on IPT. Electr. Power Syst. Res. 2018, 154, 493–502, doi:10.1016/j.epsr.2017.09.018.

82. Huang, L.; Hu, A.P.; Swain, A.; Dai, X. Comparison of two high frequency converters for capacitive power transfer. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE); IEEE: Pittsburgh, PA, USA, 2014; pp. 5437–5443.

83. Fei, L.; Hua, Z.; Hofmann, H.; Mi, C. A Double-Sided LCLC Compensated Capacitive Power Transfer System for Electric Vehicle Charging. Power Electron. IEEE Trans. 2015, 30, 6011–6014, doi:10.1109/TPEL.2015.2446891.

84. Theodoridis, M.P. Effective capacitive power transfer. IEEE Trans. Power Electron. 2012, 27, 4906–4913, doi:10.1109/TPEL.2012.2192502.

85. Mostafa, T.; Bui, D.; Muharam, A.; Hattori, R.; Hu, A. Capacitive Power Transfer System with Reduced Voltage Stress and Sensitivity. Appl. Sci. 2018, 8, 1131, doi:10.3390/app8071131.

86. Dai, J.; Ludois, D.C. Single active switch power electronics for kilowatt scale capacitive power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 315–323, doi:10.1109/JESTPE.2014.2334621.

87. Hattori, R.; Mostafa, T.; Muharam, A. Application of Capacitive Wireless Power Transfer Technologies 2017.

88. Zou, L.J.; Hu, A.P.; Su, Y. A single-wire capacitive power transfer system with large coupling alignment tolerance. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW); IEEE: Chongqing, China, 2017; pp. 93–98.

89. Muharam, A.; Mostafa, T.M.; Nugroho, A.; Hapid, A.; Hattori, R. A Single-Wire Method of Coupling Interface in Capacitive Power Transfer for Electric Vehicle Wireless Charging System. In Proceedings of the 2018 International Conference on Sustainable Energy Engineering and Application (ICSEEA); IEEE: Tangerang, Indonesia, 2018; pp. 39–43.

90. Health Canada Safety code 6: Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz; 2015;

91. Ludois, D.C.; Erickson, M.J.; Reed, J.K. Aerodynamic Fluid Bearings for Translational and Rotating Capacitors in Noncontact Capacitive Power Transfer Systems. IEEE Trans. Ind. Appl. 2014, 50, 1025–1033, doi:10.1109/TIA.2013.2273484.

92. KEMET Corporation Introduction to Capacitor Technologies: What is a Capacitor ? 2013, 16.

93. Camurati, P.; Bondar, H. Device for transporting energy by partial influence through a dielectric medium. United States Pat. 2012, 12.

94. Liu, C.; Hu, A.P. Wireless/Contactless Power Transfer; Lambert Academic Publishing: Saarbrucken, Germany, 2012;

95. Tesla Model X Owners Manual Available online: https://www.tesla.com/modelx (accessed on Aug 8, 2018).

96. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Trans. Power Electron. 2018, 33, 665–675, doi:10.1109/TPEL.2017.2662583.

97. Muharam, A.; Masuda, M.; Hattori, R.; Hapid, A. Compactly Assembled Transmitting and Receiving Modules with Shield for Capacitive Coupling Power Transfer System. In Proceedings of the 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW); IEEE: London, UK, 2019; pp. 257–262.

98. Mack, R.A.; Sevick, J. Sevick’s Transmission Line Transformers; Theory and Practice; IET, 2014; ISBN 9781891121975.

99. Ruthrofft, C.L. Some Broad-Band Transformers. In Proceedings of the Proceeding of the IRE; 1959; p. 6.

100. Sevick, J. High Frequency Electronics. 2004, pp. 50–53.

101. Bowick, C.; Blyler, J.; Ajluni, C. RF Circuit Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470405758.

102. Biggins, P. Wideband Balun Design with Ferrite Cores; 2014;

103. Schweber, B. Understanding the RF balun and its transformative function Available online: https://www.digikey.com/en/articles/techzone/2015/jul/understanding-the- rf-balun-and-its-transformative-function.

104. Li, E.S.; Lin, C.-T.; Jin, H.; Chin, K.-S. A broadband balun with complex impedance transformation and high isolation. IEEE Access 2019, 7, 112295–112303, doi:10.1109/ACCESS.2019.2934506.

105. Jensen, T.; Zhurbenko, V.; Krozer, V.; Meincke, P. Coupled transmission lines as impedance transformer. IEEE Trans. Microw. Theory Tech. 2007, 55, 2957–2965, doi:10.1109/TMTT.2007.909617.

106. IEEE Standards Coordinating Committee 39 C95.7-2014 - IEEE Recommended Practice for Radio Frequency Safety Programs , 3 kHz to 300 GHz; 2014; ISBN 978-0-7381-9211-6.

107. Limiting, F.O.R.; To, E.; Fields, M. Icnirp Guidelines for Limiting Exposure To Time ‐ Varying Guidelines for Limiting Exposure To Time-Varying. Health Phys. 1998, 74, 494‐ 522;, doi:10.1097/HP.0b013e3181f06c86.

108. International Electrotechnical Commision Methods Of Measurement Of Touch Current And Protective Conductor Current; 1999; p. 64;.

109. Behagi, A. Resonant Circuits and Filters. In RF And Microwave Circuit Design: A Design Approach Using (ADS); Techno Search: Ladera Ranch, CA, USA, 2015; pp. 1–68 ISBN 0890069735.

110. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. A 4-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Applications. IEEE Trans. Power Electron. 2016, 31, 1–1, doi:10.1109/TPEL.2016.2520963.

111. Lee, J.-B.; Baek, J.-I.; Kim, J.-K. A New Zero-Voltage Switching Half-Bridge Converter With Reduced Primary Conduction and Snubber Losses in Wide-Input-Voltage Applications. IEEE Trans. Power Electron. 2018, 33, 10419–10427, doi:10.1109/TPEL.2018.2799726.

112. Arteaga, J.M.; Aldhaher, S.; Kkelis, G.; Yates, D.C.; Mitcheson, P.D. Design of a 13.56 MHz IPT system optimised for dynamic wireless charging environments. In Proceedings of the 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC); IEEE: Auckland, New Zealand, 2016; pp. 1–6.

113. Narayanamoorthi, R.; Vimala Juliet, A.; Bharatiraja, C.; Padmanaban, S.; Leonowicz, Z.M. Class E power amplifier design and optimization for the capacitive coupled wireless power transfer system in biomedical implants. Energies 2017, 10, doi:10.3390/en10091409.

114. Choi, U.-G.; Yang, J.-R. A 120 W Class-E Power Module with an Adaptive Power Combiner for a 6.78 MHz Wireless Power Transfer System. Energies 2018, 11, 2083, doi:10.3390/en11082083.

115. Muharam, A.; Ahmad, S.; Hattori, R.; Obara, D.; Masuda, M.; Ismail, K.; Hapid, A. An Improved Ground Stability in Shielded Capacitive Wireless Power Transfer. In Proceedings of the 2019 International Conference on Sustainable Energy Engineering and Application (ICSEEA); IEEE: Tangerang, Indonesia, 2019; pp. 1–5.

116. Choi, J.; Tsukiyama, D.; Tsuruda, Y.; Davila, J.M.R. High-Frequency, High-Power Resonant Inverter With eGaN FET for Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 1890–1896, doi:10.1109/TPEL.2017.2740293.

117. Sokal, N.O.; Sokal, A.D. Class E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits 1975, 10, 168–176, doi:10.1109/JSSC.1975.1050582.

118. Sokal, N.O. QEX - American Radio Relay League. 2001, pp. 9–20.

119. Yates, D.C.; Aldhaher, S.; Mitcheson, P.D. A 100-W 94% efficient 6-MHz SiC class E inverter with a sub 2-W GaN resonant gate drive for IPT. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference (WPTC); IEEE, 2016; Vol. 2, pp. 1–3.

120. Chen, W.; Chinga, R.A.; Yoshida, S.; Lin, J.; Chen, C.; Lo, W. A 25.6 W 13.56 MHz wireless power transfer system with a 94% efficiency GaN Class-E power amplifier. IEEE MTT-S Int. Microw. Symp. Dig. 2012, 25–27, doi:10.1109/MWSYM.2012.6258349.

121. Choi, B.H.; Nguyen, D.T.; Yoo, S.J.; Kim, J.H.; Rim, C.T. A Novel Source-Side Monitored Capacitive Power Transfer System for Contactless Mobile Charger Using Class-E Converter. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring); IEEE, 2014; pp. 1–5.

122. Oh, H.; Lee, W.; Koo, H.; Bae, J.; Hwang, K.C.; Lee, K.Y.; Yang, Y. 6.78 MHz Wireless Power Transmitter Based on a Reconfigurable Class-E Power Amplifier for Multiple Device Charging. IEEE Trans. Power Electron. 2020, 35, 5907–5917, doi:10.1109/TPEL.2019.2953719.

123. Rattanarungngam, D.; Phaebua, K.; Lertwiriyaprapa, T. Power control unit for E-class power oscillator of 6.78 MHz wireless power transfer. In Proceedings of the 2017 International Symposium on Antennas and Propagation (ISAP); IEEE, 2017; pp. 1–2.

124. Shuangke Liu; Ming Liu; Fu, M.; Ma, C.; Zhu, X. A high-efficiency Class-E power amplifier with wide-range load in WPT systems. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC); IEEE, 2015; Vol. 1, pp. 1–3.

125. Yi, K.H. 6.78MHz Capacitive Coupling Wireless Power Transfer System. J. Power Electron. 2015, 15, 987–993.

126. Yusop, Y.; Saat, S.; Husin, H.; Hindustan, I.; Abdul Rahman, F.K.; Kamarudin, K.H.; Nguang, S.K. A study of capacitive power transfer using class-e resonant inverter. Asian J. Sci. Res. 2016, 9, 258–265, doi:10.3923/ajsr.2016.258.265.

127. Song, J.; Liu, M.; Ma, C. Analysis and Design of A High-Efficiency 6.78-MHz Wireless Power Transfer System with Scalable Number of Receivers. IEEE Trans. Ind. Electron. 2019, 0046, 1–1, doi:10.1109/tie.2019.2950850.

128. Rooij, M.A. De Wireless Power Handbook; A Supplement to GaN Transistors for Efficient Power Conversion; Second Edi.; Power Conversion Publications, 2015;

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る