リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Load-adaptive active gate driver integrated circuit for power device (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Load-adaptive active gate driver integrated circuit for power device (本文)

川井, 秀介 慶應義塾大学

2023.09.05

概要

The electrification and automation of various devices will continue to advance toward the
realization of a carbon-neutral society. One of the most important components to realize a
carbon-neutral society is the power converter. The power converter consists of a power
semiconductor and a control circuit. Power semiconductors have a loss-noise tradeoff. As power
semiconductors become more advanced, the converter becomes more efficient, but noise is
more likely to occur. To cope with noise, losses increase. Active gate techniques are a solution
to break the trade-off between power device loss and noise. It solves the tradeoff by driving the
power semiconductors with waveforms that match their condition. However there is no research
on active gate driver techniques with load-adaptive functions integrated in a chip.
This thesis is a study of chip-integrated active gate drivers with load-adaptive functions.
Chip-integrated active gate drivers were developed for both analog feedback and digital
feedforward techniques.
Chapter 1 provides an introduction to this thesis. An overview of power electronics is given,
and the importance of power converters is presented in terms of applications and power.
In Chapter 2, the fundamentals of active gate technique are presented, including the
characteristics of each power device, the relationship between switching waveform and noise.
Issues in terms of the characteristics of active gate technique and power devices are
summarized.
In Chapter 3, an analog active gate driver IC using discrete-time feedback technique is
proposed. Two resistors are controlled by the feedback technique to control the turn-on dVd/dt
of the SJMOS. Since the proposed technique feeds back the feedback result to the next
switching, it can control the dVd/dt that depends on the reverse recovery current. The results of
successfully reducing the switching losses by 25% using the prototype IC are described.
In Chapter 4, an active gate driver IC using digital feed-forward technique is proposed, and a
turn-off simulation analysis is performed considering the non-linearity of SiC-MOSFET
capacitance. The active gate waveform that reduce the surge voltage is proposed based on the
analysis. ...

参考文献

[1]

W. E. Newell, "Power Electronics -merging from Limbo," IEEE Trans. Ind. Appl., Vols.

1A-10, no. 1, pp. 7-11, 1974.

[2]

T. J. E. M. Association, " ト ッ プ ラ ン ナ ー モ ー タ ," [Online]. Available:

https://www.jema-net.or.jp/jema/data/2016_TM.PDF.

[3]

T. a. I. Ministry of Economy, "Green Growth Strategy Through Achieving Carbon

Neutrality

in

2050,"

[Online].

Available:

https://www.meti.go.jp/english/policy/energy_environment/global_warming/ggs2050/ind

ex.html.

[4]

J.

W.

Kolar,

"Power

Electronics

2.0,"

[Online].

Available:

https://www.pes-publications.ee.ethz.ch/uploads/tx_ethpublications/workshop_publicatio

ns/1-Kolar-Power_Electronics_2_0_complete.pdf.

[5]

A. Nakagawa, H. Ohashi, M. Kurata, H. Yamaguchi and K. Watanabe, "Non-latch-up

1200V 75A bipolar-mode MOSFET with large ASO," in International Electron Devices

Meeting, San Francisco, CA, USA, 1984.

[6]

W. Saito, I. Omura, S. Aida and S. Koduki, "A 20m/spl Omega/cm/sup 2/ 600 V-class

superjunction MOSFET," in 16th International Symposium on Power Semiconductor

Devices and ICs, Kitakyushu, Japan, 2004.

[7]

A. Nabae, K. Otsuka, H. Uchino and R. Kurosawa, "n Approach to Flux Control of

Induction Motors Operated with Variable-Frequency Power Supply," IEEE Trans. Ind.

Appl., Vols. IA-16, no. 3, pp. 342-350, May 1980.

[8]

N. Miura, K. Fujihira, Y. Nakao, T. Watanabe, Y. Tarui, S. Kinouchi, M. Imaizumi and

T. Oomori, "Successful Development of 1.2 kV 41-SiC MOSFETs with the Very Low

On-Resistance of 5 mQcm2," in 31st Int. Symp. Power Semiconductor Devices ICs

(ISPSD), 2006.

128

[9]

E. A. Jones, F. Wang and a. D. Costinett, "Review of Commercial GaN Power Devices

and GaN-Based Converter Design Challenges," IEEE J. Emerg. Sel. Topics Power

Electron., vol. 4, no. 3, pp. 707-719, Sept. 2016.

[10]

J. Rodriguez, J.-S. Lai , F. Z. Peng, “Multilevel Inverters: A Survey of Topologies,

Controls, and Applications,” IEEE Trans. Ind, Electron., 第 巻 49, 第 4, pp. 724-738,

Aug 2002.

[11]

F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui and M. E. H. Benbouzid, "Hybrid

Cascaded H-Bridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for

Automotive Applications," IEEE Trans. Ind, Electron., vol. 57, no. 3, pp. 892-899, Mar.

2010.

[12]

J. D. Barros and J. F. Silva, "Optimal Predictive Control of Three-Phase NPC

Multilevel Converter for Power Quality Applications," IEEE Trans. Ind, Electron., vol.

55, no. 10, pp. 3670-3681, Oct 2008.

[13]

S. Zhao, Q. Li and F. C. Lee, "High Frequency Transformer Design for Modular Power

Conversion from Medium Voltage AC to 400V DC," in IEEE Appl. Power Electron.

Conf. Expo. (APEC), 2017.

[14]

T. Begalke, "A direct isolated bi-directional converter as a power electronic building

block (PEBB)," in IEEE Power Electronics Specialists Conference, Rhodes, Greece,,

2008.

[15]

B. Reese, M. S. A. L. B. R. R. Saunders and J. Balda, "High voltage, high power

density bi-directional multi-level converters utilizing silicon and silicon carbide (SiC)

switches," in Twenty-Third Annual IEEE Applied Power Electronics Conference and

Exposition, Austin, TX, USA, 2008.

[16]

A. J. M. Cardoso, "Power Electronics Design Methods and Automation in the Digital

Era: Evolution of Design Automation Tools," IEEE Power Electronics Magazine, vol. 7,

no. 2, pp. 36-40, June 2020.

[17]

T. W. Rasmussen, "Active gate driver for dv/dt control and active voltage clamping in

an IGBT stack," in European Conference on Power Electronics and Applications,

129

Dresden, Germany, 2005.

[18]

G. Deboy, N. Marz, J. P. Stengl, H. Strack, J. Tihanyi and H. Weber, "A new generation

of high voltage MOSFETs breaks the limit line of silicon," in International Electron

Devices Meeting, San Francisco, CA, USA, 1998.

[19]

J. Lutz, H. Schlangenotto, U. Scheuermann and R. D. Doncker, Semiconductor Power

Devices, Springer, 2011.

[20]

B. J. Baliga, Fundamentals of Power Semiconductor Devices, Second ed., Springer,

2019.

[21]

R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Third ed.,

Springer, 2020.

[22]

N. Oswald, B. H. Stark, D. Holliday, C. Hargis and B. Drury, "Analysis of Shaped

Pulse Transitions in Power Electronic Switching Waveforms for Reduced EMI

Generation," IEEE Tran. Ind. Appl., vol. 47, no. 5, pp. 2154-2165, Sept.-Oct. 2011.

[23]

T. Yasuzumi, H. Yamashita and T. Mizoguchi, "Analysis of Switching Noise

Mechanism and Proposal of Improvement Measures Focused on Capacitance-Voltage

Characteristics of Superjunction-MOSFET," IEEJ Trans. Ind. Appl., vol. 142, no. 10, pp.

721-728.

[24]

Y. Lobsiger and J. Kolar, "Closed-Loop di/dt and dv/dt IGBT Gate Driver," IEEE

Trans. Power Electron., vol. 30, no. 6, pp. 3402-3417, June 2015.

[25]

L. Shu, J. Zhang, F. Peng and Z. Chen, "Active current source IGBT gate drive with

closed-loop di/dt and dv/dt Control," IEEE Trans. Power Electron., vol. 32, no. 5, pp.

3787-3796, May 2017.

[26]

X. Wangm, Y. He, J. Zhang, S. Shao, H. Li and C. Luo., "An Active Gate Driver for

Dynamic Current Sharing of Paralleled SiC MOSFETs," in IEEE Energy Conversion

Congress & Exposition (ECCE 2021), 2021.

[27]

Y. Noge, M. Shoyama and M. Deng, "Active Gate Driver for High Power

SiC-MOSFET Module with Source Current Feedback and P-D controller," in IEEE 10th

130

International Conference on Power Electronics - ECCE Asia, 2021.

[28]

B. Sun, R. Burgos, X. Zhang and D. Boroyevich, "Active dv/dt control of 600V GaN

transistors," in IEEE Energy Conversion Congress and Exposition (ECCE), 2016.

[29]

P. Bau, M. Cousineau, B. Cougo, F. Richardeau, S. Vinnac, D. Flumian and N. Rouger,

"Sub-Nanosecond Delay CMOS Active Gate Driver for Closed-Loop dv/dt Control of

GaN Transistors," in 31st International Symposium on Power Semiconductor Devices

and ICs (ISPSD), 2019.

[30]

W. Frank, A. Arens and S. Hoerold, "Real-time adjustable gate current control IC solves

dv/dt problems in electric drives," in PCIM Europe 2014; International Exhibition and

Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy

Management, 2014.

[31]

W. Frank and H. Husken, "Current Source Gate Drivers Boost the Turn-On

Performance of IGBT," Bodo's Power Systems, Nov. 2018. [Online]. Available:

https://www.infineon.com/dgdl/ Infineon-Gate Drivers Boost IGBT Performance Bodos

Power Systems-ART-v01 00-EN.pdf? fileId=5546d46266f85d6301670826b055322b.

[32]

"Rise and fall time regulation with current source MOSFET gate drivers. Application

Note,

No.

Z8F69449874,"

Infineon,

2020.

[Online].

Available:

https://www.infineon.com/dgdl/

Infineon-Z8F69449874-Rise-fall-time-regulation-with-current-source-MOSFET-gate-dri

vers-ApplicationNotes-v01 00-EN.pdf?fileId=5546d46272e49d2a0172eaac3c9b72fb.

[33]

N. Lakshmanan and T. Radke, "An Advanced Si-IGBT Chip for Delivering Maximum

Overall System Performance," in PCIM Europe 2017; International Exhibition and

Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy

Management, 2017.

[34]

"Understanding Smart Gate Drive," Texas Instruments, [Online]. Available:

https://www.ti.com/lit/pdf/slva714..

[35]

"BD16950EFV-C 2ch Half-Bridge Gate Driver," Rohm, 2017. [Online]. Available:

https://www.rohm.co.jp/products/motor-actuator-drivers/dc-brush-motor/bd16950efv-c-p

131

roduct.

[36]

"LT1683

Datasheet,"

Analog

Devices

Inc.,

[Online].

Available:

https://www.analog.com/jp/products/lt1683.html..

[37]

N. Satheesh, "Silicon Carbide MOSFETS - Handle with Care. Agile Switch," 2018.

[Online]. Available: http://www.agileswitch.com/augmented-switching.html. .

[38]

"AP12A/AP17A

Datasheet,"

Amantys,

[Online].

Available:

https://www.amantys.com/assets/common/P100008r05 Amantys 1200V 1700V Gate

Drive Datasheet.pdf.

[39]

K. Miyazaki, S. Abe, M. Tsukuda, I. Omura, K. Wada, M. Takamiya and T. Sakurai,

"General-Purpose Clocked Gate Driver IC With Programmable 63-Level Drivability to

Optimize Overshoot and Energy Loss in Switching by a Simulated Annealing

Algorithm," IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2350-2357, June 2017.

[40]

W. Frank, "Simple slew-rate control technique cuts switching losses," in PCIM Europe

2019; International Exhibition and Conference for Power Electronics, Intelligent Motion,

Renewable Energy and Energy Management, 2019.

[41]

Y. Han, H. Lu, Y. Li and J. Chai, "Open-Loop Gate Control for Optimizing the

Turn-ON Transition of SiC MOSFETs," IEEE J. Emerg. Sel. Topics Power Electron., vol.

7, no. 2, pp. 1126-1136, June 2019.

[42]

H. Dymond, J. Wang, D. Liu, J. Dalton, N. McNeill, D. Pamunuwa, S. Hollis and B.

Stark, "A 6.7-GHz Active Gate Driver for GaN FETs to Combat Overshoot, Ringing, and

EMI," IEEE Trans. Power Electron., vol. 33, no. 1, pp. 581-594, 2018.

[43]

D. Liu, H. Dymond, S. J. Hollis, J. W. N. McNeill, D. Pamunuwa, S. Hollis and B.

Stark, "Full Custom Design of an Arbitrary Waveform Gate Driver With 10-GHz

Waypoint Rates for GaN FETs," IEEE Trans.n Power Electron., vol. 36, no. 7, pp.

8267-8279, Jul. 2021.

[44]

Y. Sukhatme, V. K. M. P. Ganesan and K. Hatua, "Digitally Controlled Gate Current

Source-Based Active Gate Driver for Silicon Carbide MOSFETs," IEEE Trans. Ind.

132

Electron., vol. 67, no. 12, pp. 10121-10133, 2020.

[45]

P. Nayak and K. Hatua, "Parasitic Inductance and Capacitance-Assisted Active Gate

Driving Technique to Minimize Switching Loss of SiC MOSFET," IEEE Trans. on Ind.

Electron., vol. 64, no. 10, pp. 8288-8298, Oct. 2017.

[46]

Y. S. Cheng, D. Yamaguchi, T. Mannen, K. Wada, T. Sai, K. Miyazaki, M. Takamiya

and T. Sakurai, "High-Speed Searching of Optimum Switching Pattern for Digital Active

Gate Drive to Adapt to Various Load Conditions," IEEE Trans. Ind. Electron., vol. 69,

no. 5, pp. 5185-5194, May 2022.

[47]

E. Raviola and F. Fiori, "An Adaptive Method to Reduce Undershoots and Overshoots

in Power Switching Transistors Through a Low Complexity Active Gate Driver," IEEE

Trans. Power Electron. Early Access.

[48]

Y. Ling, Z. Zhao and Y. Zhu, "A Self-Regulating Gate Driver for High-Power IGBTs,"

IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3450-3461, Mar 2021.

[49]

F. Zhang, X. Yang, Y. Ren, L. Feng, W. Chen and Y. Pei, "Advanced Active Gate Drive

for Switching Performance Improvement and Overvoltage Protection of High-Power

IGBTs," IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3802-3815, May 2018.

[50]

M. Blank, A. K. T. Gluck and H. P. Kreuter, "Digital slew rate and

s-shape control for

smart power switches to reduce EMI generation," IEEE Trans. Power Electron, vol. 30,

no. 9, pp. 5170-5180, Sept. 2015.

[51]

D. Zhang, K. Hori, K. Hata and M. Takamiya, "Digital Gate Driver IC with Fully

Integrated Automatic Timing Control Function in Stop-and-Go Gate Drive for IGBT," in

IEEE Appl. Power Electron. Conf. Expo. (APEC), 2023.

[52]

A. P. Camacho, V. Sala, H. Ghorbani and J. L. R. Martinez, "A Novel Active Gate

Driver for Improving SiC MOSFET Switching Trajectory," IEEE Trans. Ind. Electron.,

vol. 64, no. 11, pp. 9032-9042, Nov. 2017.

[53]

H. Gui, Z. Zhang, R. Chen, J. Niu, L. M. Tolbert, F. Wang, D. Costinett and B. J.

Blalock, "Gate Drive Technology Evaluation and Development to Maximize Switching

133

Speed of SiC Discrete Devices and Power Modules in Hard Switching Applications,"

IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 4, pp. 4160-4172, Dec. 2020.

[54]

S. Zhao, A. Dearien, Y. Wu, C. Farnell, A. U. Rashid, F. Luo and H. A. Mantooth,

"Adaptive Multi- Level Active Gate Drivers for SiC Power Devices," IEEE Trans. Power

Electron., vol. 35, no. 2, pp. 1882-1898, Feb. 2020.

[55]

R. Wang, L. Liang, Y. Chen, Y. Pan, J. Li, L. Han and G. Tan, "Self-Adaptive Active

Gate Driver for IGBT Switching Performance Optimization Based on Status

Monitoring," IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6362-6372, June 2020.

[56]

R. Morikawa, T. Sai, K. Hata and M. Takamiya, "New Gate Driving Technique Using

Digital Gate Driver IC to Reduce Both EMI in Specific Frequency Band and Switching

Loss in IGBTs," in IEEE 9th International Power Electronics and Motion Control

Conference (IPEMC2020-ECCE Asia), Nanjing, China, 2020.

[57]

M. Sandell, X. Wang, G. Watkins, S. Kawai, T. Ueno and K. Onizuka, "Multiobjective

optimisation of active gate drivers for fast-switching MOSFETs," in IEEE Energy

Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022.

[58]

H. Funato, T. Mori, T. Igarashi, S. Ogasawara, F. Okazaki and Y. Hirota, "Optimization

of Switching Transient Waveform to Reduce Harmonics in Selective Frequency Bands,"

IEEJ Journal of Industry Applications, vol. 2, no. 3, pp. 161-169, 2013.

[59]

N. Wang and J. Zhang, "Nonlinear Capacitance Model of SiC MOSFET Considering

Envelope of Switching Trajectory," IEEE Trans. Power Electron., vol. 37, no. 7, pp.

7977-7988, July 2022.

[60]

K. Chen, Z. Zhao, L. Yuan, T. Lu and F. He, "The Impact of Nonlinear Junction

Capacitance on Switching Transient and Its Modeling for SiC MOSFET," IEEE Trans.

Electron Dev., vol. 62, no. 2, pp. 333-338, Feb. 2015.

[61]

L. Jing, M. Du, K. Wei and W. G. Hurley, "An Improved Behavior Model for IGBT

Modules Driven by Datasheet and Measurement," IEEE Trans. on Electron Dev., vol. 67,

no. 1, pp. 230-236, Jan. 2020.

134

[62]

M. S. Nikoo, A. Jafari, N. Perera and E. Matioli, "Measurement of Large-Signal COSS

and COSS Losses of Transistors Based on Nonlinear Resonance," IEEE Trans. Power

Electron., vol. 35, no. 3, pp. 2242-2246, Mar 2020.

[63]

G. D. Zulauf, J. Roig-Guitart, J. D. Plummer and J. M. Rivas-Davila, "COSS

Measurements for Superjunction MOSFETs: Limitations and Opportunities," IEEE

Trans. on Electron Dev., vol. 66, no. 1, pp. 578-584, Jan. 2019.

[64]

L. Middelstaedt, J. Wang, B. H. Stark and A. Lindemann, "Direct Approach of

Simultaneously Eliminating EMI-Critical Oscillations and Decreasing Switching Losses

for Wide Bandgap Power Semiconductors," IEEE Trans. Power Electron., vol. 34, no. 11,

pp. 10376-10380, Nov. 2019.

[65]

J. Cao, Z. Zhou, Y. Shi and B. Zhang, "On-chip Active Turn-off Driving Technique to

Prevent Channel Current from Disappearing Prematurely in SiC MOSFET’s

applications," IEEE Trans. Circuits Syst. II, Wxp. Briefs,, vol. 70, no. 2, pp. 660-664, Feb.

2023.

[66]

S. Kawai, T. Ueno and K. Onizuka, "A 4.5V/ns Active Slew-Rate-Controlling Gate

Driver with Robust Discrete-Time Feedback Technique for 600V Superjunction

MOSFETs," in IEEE International Solid-State Circuit Conference, 2019.

[67]

O. Al-Naseem, R. W. Erickson and P. Carlin, "Prediction of Switching Loss Variations

by Averaged Switch Modeling," in IEEE Power Electronics Specialists Conference,

2004.

[68]

"TK8A60W5

datasheets,"

[Online].

Available:

https://toshiba.semicon-storage.com/ap-en/semiconductor/product/mosfets/400v-900v-m

osfets/detail.TK8A60W5.html.

[69]

"TK39N60W5

datasheets,"

[Online].

Available:

https://toshiba.semicon-storage.com/ap-en/semiconductor/product/mosfets/400v-900v-m

osfets/detail.TK39N60W5.html.

[70]

"MOSFET

SPICE

model

grade

Application

Note,"

https://toshiba.semicon-storage.com/info/docget.jsp?did=139481.

135

[Online].

Available:

[71]

"FUJI IGBT MODULES APPLICATION MANUAL," Fuji Electric Co., Ltd., [Online].

Available:

https://www.fujielectric.com/products/semiconductor/model/igbt/application/box/doc/pdf

/REH984e/REH984e.pdf.

[72]

"IKZ75N65EL5

datasheets,"

[Online].

Available:

https://www.infineon.com/dgdl/Infineon-IKZ75N65EL5-DataSheet-v02_03-EN.pdf?fileI

d=5546d4624b0b249c014b11e8c9ca3af9.

[73]

"TW070J120B

datasheets,"

[Online].

Available:

https://toshiba.semicon-storage.com/jp/semiconductor/product/mosfets/detail.TW070J12

0B.html.

[74]

"GNP1150TCA-Z

datasheets,"

[Online].

Available:

https://fscdn.rohm.com/en/products/databook/datasheet/discrete/gan/hemt/gnp1150tca-ze.pdf.

[75]

S. Kawai, T. Ueno, H. Ishihara, S. Takaya, K. Miyazaki and K. Onizuka, "A

1ns-Resolution Load Adaptive Digital Gate Driver IC with Integrated 500ksps ADC for

Drive Pattern Selection and Functional Safety Targeting Dependable SiC Application," in

IEEE Energy Conversion Congress & Exposition (ECCE 2021), 2021.

[76]

K. Tan, B. Ji, J. Wang, W. Deng, D. Li, Z. Wang, Z. Liu and a. W. Cao, "Evaluation of

the turn-off transient controllability for high-power IGBT modules," IET Power Electron

[Online]. Available at https://doi.org/10.1049/pel2.12255.

[77]

H. Ishihara and K. Onizuka, "A Fully-Generic-Process Galvanic Isolator for Gate

Driver with 123mW 23% Power Transfer and Full-Triplex 21/14/0.5Mb/s Bidirectional

Communication

Utilizing

Reference-Free

Dual-Modulation

FSK,"

in

IEEE

International Solid-State Circuit Conference, 2020.

[78]

"SCT3080KR

datasheets,"

[Online].

Available:

https://www.rohm.co.jp/products/sic-power-devices/sic-mosfet/sct3080kr-product.

[79]

J. Brandelero, J. Ewanchuk and S. Mollov, "On-line Virtual Junction Temperature

Measurement via DC Gate Current Injection," in 10th International Conference on

136

Integrated Power Electronics Systems, Stuttgart, Germany,, 2018.

[80]

M. Denk and M. Bakran, "An IGBT Driver Concept with Integrated Real-Time

Junction Temperature Measurement," in PCIM Europe 2014; International Exhibition

and Conference for Power Electronics, Intelligent Motion, Renewable Energy and

Energy Management,, PCIM Europe 2014; International Exhibition and Conference for

Power Electronics, Intelligent Motion, Renewable Energy and Energy Management,,

2014.

[81]

Y. Wen, Y. Yang and Y. Gao, "Active Gate Driver for Improving Current Sharing

Performance of Paralleled High-Power SiC MOSFET Modules," IEEE Trans. Power

Electron., vol. 36, no. 2, pp. 1491-1505, Feb. 2021.

[82]

R. Alvarez and S. Bernet, "Sinusoidal current operation of delay time compensation for

parallel connected IGBTs," in IEEE Energy Conversion Congress and Exposition

(ECCE), Raleigh, NC, USA, 2012.

[83]

M. Son, Y. Cho and S. Baek, "Active Gate Driver With Turn-off Delay Control for

Voltage Balancing of Series-Connected SiC MOSFETs," IEEE Trans. Power Electron.,

vol. 37, no. 12, pp. 14575-14586, Dec. 2022.

[84]

A. Marzoughi, R. Burgos and D. Boroyevich, "Active Gate-Driver With dv/dt

Controller for Dynamic Voltage Balancing in Series-Connected SiC MOSFETs," IEEE

Trans. on Ind. Electron., vol. 66, no. 4, pp. 2488-2498, April 2019.

137

Published Papers

Journal Papers (related to Thesis)

1.

S. Kawai, T. Ueno, H. Ishikuro and K. Onizuka, "An Active Slew Rate Control Gate

Driver IC With Robust Discrete-Time Feedback Technique for 600-V Superjunction

MOSFETs," in IEEE J. Solid-State Circuits, vol. 58, no. 2, pp. 428-438, Feb. 2023.

2.

S. Kawai et al., "A Load Adaptive Digital Gate Driver IC with Integrated 500ksps ADC

for Drive Pattern Selection and Functional Safety Targeting Dependable SiC Application,"

in IEEE Trans. on Power Electron., vol. 38, no. 6, pp. 7079-7091, Jun. 2023.

Presentations at International Conference (related to Thesis)

1.

S. Kawai, T. Ueno, and K. Onizuka “A 4.5V/ns Active Slew-Rate-Controlling Gate Driver

with Robust Discrete-Time Feedback Technique for 600V Superjunction MOSFETs” IEEE

International Solid-State Circuit Conference, pp. 252-253, 2019.

2.

S. Kawai, T. Ueno, H. Ishihara, S. Takaya, K. Miyazaki, and K. Onizuka “A

1ns-Resolution Load Adaptive Digital Gate Driver IC with Integrated 500ksps ADC for

Drive Pattern Selection and Functional Safety Targeting Dependable SiC Application”

IEEE Energy Conversion Congress & Exposition (ECCE 2021), Oct, 2021.

Journal Papers

1.

S. Kawai, R. Ito, K. Nakata, Y. Shimizu, M. Nagata, T. Takeuchi, H. Kobayashi, K.

Ikeuchi, T. Kato, Y. Hagiwara, Y. Fujimura, K. Yoshioka , S. Saigusa, H. Yoshida, M. Arai,

T. Yamagishi, H. Kajihara, K. Horiuchi, H. Yamada, T. Suzuki, Y, Ando, K. Nakanishi, K.

Ban, M. Sekiya, Y. Egashira, T. Aoki, K. Onizuka, and T. Mitomo. “An 802.11ax 4×4

spectrum-efficient

WLAN

AP

transceiver

SoC

supporting

1024QAM

with

frequency-dependent IQ calibration and integrated interference analyzer” IEEE J. of

Solid-State Circuits, vol. 53, no. 12, pp. 3688-3699, Dec. 2018.

2.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka and S. Ito. "A

1024-QAM Capable WLAN Receiver with ?56.3 dB Image Rejection Ratio Using

138

Self-Calibration Technique," IEICE Trans. on Electron., vol. E80-C, no. 4, pp. 573-581,

April 2017

Presentations at International Conference

1.

S. Kawai, H. Aoyama, R. Ito, Y. Shimizu, M. Ashida, A. Maki, T. Takeuchi, H. Kobayashi,

G. Urakawa, H. Hoshino, S. Saigusa, K. Koyama, M. Morita, R. Nihei, D. Goto, M.

Nagata, K. Nakata, K. Ikeuchi, K. Yoshioka1, R. Tachibana, M. Arai, C-K. Teh, A. Suzuki,

H. Yoshida, Y. Hagiwara, T. Kato, I. Seto, T. Horiguchi, K. Ban, K. Takahashi, H. Kajihara,

T. Yamagishi, Y. Fujimura, K. Horiuchi, K. Nonin, K. Kurose, H. Yamada, K. Taniguchi,

M. Sekiya, T. Tomizawa, D. Taki, M. Ikuta, T. Suzuki, Y. Ando, D. Yashima, T. Kaihotsu,

H. Mori, K. Nakanishi, T. Kumagaya, Y. Unekawa, T. Aoki, K. Onizuka, and T. Mitomo.

“An 802.11ax 4×4 spectrum-efficient WLAN AP transceiver SoC supporting 1024QAM

with frequency-dependent IQ calibration and integrated interference analyzer," 2018 IEEE

International Solid - State Circuits Conference (ISSCC).

2.

S. Kawai, T. Yamagishi, Y. Hagiwara, S. Saigusa, I. Seto, S. Otaka, and S. Ito. “A

1024-QAM capable WLAN receiver with −56.3 dB image rejection ratio using

self-calibration technique” 2017 IEEE International Symposium on Circuits and Systems

(ISCAS).

3.

S. Kawai, T. Wang, T. Mitomo, and S. Saigusa. “A Temperature Variation Tolerant 60 GHz

Low Noise Amplifier with Current Compensated Bias Circuit” 2013 IEEE Asian Solid

State Circuits Conference (A-SSCC).

4.

S. Kawai, T. Mitomo, and S. Saigusa. “A 60GHz CMOS rectifier with −27.5dBm

sensitivity for mm-Wave power detection” 2012 IEEE Asian Solid State Circuits

Conference (A-SSCC).

5.

S. Kawai, H. Ishikuro, and T. Kuroda. “A 2.5Gb/s/ch 4PAM inductive-coupling transceiver

for non-contact memory card” 2010 IEEE International Solid- State Circuits Conference

(ISSCC).

6.

S. Kawai, H. Ishikuro, and T. Kuroda. “A 4.7Gb/s Inductive Coupling Interposer with

Dual Mode Modem” 2009 IEEE Symposium on VLSI Circuits.

139

7.

S. Kawai, T. Ikari, Y. Takikawa, H. Ishikuro, and T. Kuroda. “A wireless real-time on-chip

bus trace system using quasi-synchronous parallel inductive coupling transceivers” 2008

IEEE Asian Solid State Circuits Conference (A-SSCC).

Journal Papers (Co-Author)

1.

K. Niitsu, S. Kawai, N. Miura, H. Ishikuro, and T. Kuroda. “A 65fJ/b Inter-Chip

Inductive-Coupling Data Transceivers Using Charge-Recycling Technique for Low-Power

Inter-Chip Communication in 3-D System Integration” IEEE Trans. on Very Large Scale

Integ. (VLSI) Systems. vol. 20, no. 7, pp. 1285-1294, Jul. 2012.

2.

N. Miura, T. Shidei, Y. Yuan, S. Kawai, K. Takatsu, Y. Kiyota, Y. Asano and T. Kuroda. “A

0.55 V 10 fJ/bit Inductive-Coupling Data Link and 0.7 V 135 fJ/Cycle Clock Link With

Dual-Coil Transmission Scheme” IEEE J. of Solid-State Circuits, vol. 46, no. 4, pp.

965-073, Apr. 2011.

Presentations at International Conference (Co-Author)

1.

M. Sandell, X. Wang, G. Watkins, S. Kawai, T. Ueno, and K. Onizuka. “Multiobjective

optimisation of active gate drivers for fast-switching MOSFETs” IEEE Energy Conversion

Congress & Exposition (ECCE 2022), Oct, 2022.

2.

A. Shirane, S. Kawai, H. Aoyama, R. Ito, T. Mitomo, H. Kobayashi, H. Yoshida, H.

Majima, R. Fujimoto, And H. Tsurumi. “A low voltage 0.8V RF receiver in 28nm CMOS

for 5GHz WLAN” 2017 IEEE European Solid State Circuits Conference (ESSCIRC)

3.

S. Saigusa, T. Mitomo, H. Okuni, M. Hosoya, A. Sai, S. Kawai, T. Wang, M. Furuta, K.

Shiraishi, K. Ban, S. Horikawa, T. Tandai, R. Matsuo, T. Tomizawa, H. Hoshino, J.

Matsuno, Y. Tsutsumi, R. Tachibana, O. Watanabe, and T. Itakura. “A fully integrated

single-chip 60GHz CMOS transceiver with scalable power consumption for proximity

wireless communication” 2014 IEEE International Solid- State Circuits Conference (ISSCC)

4.

N. Miura, T. Shidei, Y. Yuan, S. Kawai, K. Takatsu, Y. Kiyota, Y. Asano and T. Kuroda. “A

0.7V 20fJ/bit inductive-coupling data link with dual-coil transmission scheme” 2010

140

Symposium on VLSI Circuits.

5.

K. Niitsu, S. Kawai, N. Miura, H. Ishikuro and T. Kuroda. “A 65 fJ/b inductive-coupling

inter-chip transceiver using charge recycling technique for power-aware 3D system

integration” 2008 IEEE Asian Solid State Circuits Conference (A-SSCC).

141

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る