リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Noise-Robust Data Assimilation Method for Crystal Structure Prediction Using Powder Diffraction Intensity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Noise-Robust Data Assimilation Method for Crystal Structure Prediction Using Powder Diffraction Intensity

吉川, 誠司 東京大学 DOI:10.15083/0002006675

2023.03.24

概要

論文審査の結果の要旨
氏名

吉 川 誠 司

本論文は 4 章からなる。第 1 章はイントロダクションであり、結晶構造の理論予測のこ
れまでの研究を概観した後に、本論文の主題である理論的に計算された系のポテンシャル
関数と実験データ(粉末 X 線回折データや中性子回折データ)に基づき計算されたペナルテ
ィ関数を同時に最適化するデータ同化の手法に言及している。結晶構造の理論予測は物質
デザインの出発点であるが、ユニットセル内の原子数の増加に対して配位空間の複雑さは
指数関数的に増大し、複雑結晶の理論的な構造予測は未だ困難である。実験データを利用
することで探索すべき配位空間の次元は大幅に削減できる可能性があり、本論文では複雑
結晶の構造を予測するために計算科学と実験科学を融合するデータ同化の手法を提案し
ている。
第 2 章では、ペナルティ関数を導入することで結晶構造の探索効率が向上する理由に関
して基本概念を説明し、さらにベイズの定理を用いて本データ同化手法の基礎付けを行っ
ている。系のポテンシャル関数と実験データが十分に信頼のおけるものであれば、ポテン
シャル関数とペナルティ関数の両者において、その大域的極小解が実験データに対応する
と期待される。提案されたデータ同化の手法では適当な重みづけの下でポテンシャル関数
とペナルティ関数の和で定義されるコスト関数を定義し、コスト関数の大域的極小解を求
めることで、実験データに整合し、かつエネルギー的にも安定な結晶構造を探索する。実
験データ(粉末 X 線回折データや中性子回折データ)に基づき計算されるペナルティ関数と
しては、これまで計算から得られた回折強度のみを参照する結晶化度関数が提案されてお
り、実験の強度比は積極的には用いられていない。論文提出者は実験の強度比を明示的に
組み込んだ相関係数形のペナルティ関数を新たに提案した。本ペナルティ関数は回折デー
タのピーク位置のみならず強度比をも考慮に入れることで、実験データの情報をより有効
に利用できる形式を持っており、独自性が高く有効な手法である。またシミュレーション
により得られた構造を定量的に特徴づけるために構造指紋(structure fingerprint)を定義
し、構造指紋間の差異を計算することで、参照構造からの差異を容易に計算できるように
した。ポテンシャル関数とペナルティ関数から構成されたコスト関数は分子動力学シミュ
レーションにおける擬似徐冷法を用いて最適化する手法が提案されており、第 3 章におい
て、その有効性が検証されている。
第 3 章では本提案手法の有効性を検証するために、SiO2(コーサイト)とε-Zn(OH)2 に対
してポテンシャル関数、ペナルティ関数の全因子αの選択、温度制御方法が議論されてい

る。SiO2(コーサイト)に対して二体ポテンシャル(Tsuneyuki ポテンシャル)を使用した場
合にはポテンシャル形状が単純となり、構造探査の成功率は 100%近くとなったが、より
複雑な Tersoff 型ポテンシャルを用いた場合には全因子αを調整した場合でもその成功率
は 6%程度に留まる。全因子αの選択は原子運動の平均二乗変位量と相関していることが
議論され、全因子αの選択基準の指針が与えられている。さらに回折データにノイズが含
まれた場合でも構造探査の成功率が大きく減少しないことが定量的に示され、頑健な手法
であることが分かる。ε-Zn(OH)2 に対しては X 線と中性子の回折データの両者を考慮し
たペナルティ関数と原子毎に温度制御を行う手法を導入することで、構造探査の成功率が
4%から 25%に向上しており、修正を加えた擬似徐冷法がコスト関数の大域的最適化に有
効であることが明確に示されている。
さらに第 3 章では未知構造の構造予測に本手法を適用している。東北大学の折茂グルー
プにおいて超高圧下で合成された Al-Ca-H 水素化物は水素貯蔵材料として応用が期待さ
れているが、その結晶構造は現時点では未知である。論文提出者は本データ同化手法を AlCa-H 水素化物に適用し、ユニットセルが Al12Ca20H76 からなる候補構造が実験データに
およそ整合し、また安定性も高いことを見出した。ユニットセルに含まれる原子数が大き
いため、まず Al-Ca の二元系に対して原子埋め込みポテンシャルを用いてコスト関数の最
適化を行い、Al と Ca の原子位置を定めた。その後、空隙に水素原子を挿入し、密度汎関
数理論に基づく第一原理電子状態計算手法を用いてユニットセルも含めて構造最適化を
行った。得られた結晶構造は実験の X 線回折データとおよそ整合し、またエネルギー的に
も安定であり、Al-Ca-H 水素化物の候補構造として初めての提案となった。また第 4 章で
はまとめと将来展望を述べている。
以上、本論文は計算科学手法と実験データを同化することで、複雑結晶構造を予測する
新たな手法を提案するものである。適用事例からその有効性が明確に示されており、今後
の研究展開が期待され、計算と実験の融合研究に大きく寄与するものである。
なお、この論文の一部は東京大学大学院理学系研究科・常行真司氏、佐藤龍平氏、明石
遼介氏、藤堂眞治氏、東北大学金属材料研究所・折茂慎一氏、量子科学技術研究開発機構・
齋藤寛之氏との共同研究であるが、論文提出者が主体となって手法開発及び検証を行った
もので、論文提出者の寄与が十分であると判断される。
したがって、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

solution from powder diffraction data. Journal of Applied Crystallography, 32:864,

1999.

O. J. Lanning, S. Habershon, K. D. M. Harris, R. L. Johnston, B. M. Kariuki,

E. Tedesco, and G. W. Turner. Definition of aguiding function’in global optimization:

a hybrid approach combining energy and R-factor in structure solution from powder

diffraction data. Chemical Physics Letters, 317:296, 2000.

G. W. Turner, E. Tedesco, K. D. M. Harris, R. L. Johnston, and B. M. Kariuki. A

method for understanding characteristics of multi-dimensional hypersurfaces, illustrated by energy and powder profile R-factor hypersurfaces for molecular crystals.

Zeitschrift f¨

ur Kristallographie-Crystalline Materials, 216:187, 2001.

S. M. Santos, J. Rocha, and L. Mafra. Nmr crystallography: toward chemical shiftdriven crystal structure determination of the β-lactam antibiotic amoxicillin trihydrate. Crystal Growth & Design, 13:2390, 2013.

B. Meredig and C. Wolverton. A hybrid computational–experimental approach for

automated crystal structure solution. Nature Materials, 12:123, 2013.

L. Ward, K. Michel, and C. Wolverton. Automated crystal structure solution from

powder diffraction data: Validation of the first-principles-assisted structure solution

method. Physical Review Materials, 1:063802, 2017.

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation

effects. Physical Review, 140:A1133, 1965.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864,

1964.

J. P. Perdew. Accurate density functional for the energy: Real-space cutoff of the

gradient expansion for the exchange hole. Physical Review Letters, 55:1665, 1988.

G. Kresse and J. Furthm¨

uller. Efficient iterative schemes for ab initio total-energy

calculations using a plane-wave basis set. Physical Review B, 354:11169, 1996.

G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector

augmented-wave method. Physical Review B, 59:1758, 1999.

M. Shiga, M. Tachikawa, and S. Miura. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics.

Chemical Physics Letters, 332:396, 2000.

M. Shiga, M. Tachikawa, and S. Miura. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics. The Journal of Chemical Physics,

115:9149, 2001.

S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui. First-principles interatomic

potential of silica applied to molecular dynamics. Physical Review Letters, 61:869,

1988.

J. Tersoff. New empirical approach for the structure and energy of covalent systems.

Physical Review B, 37:6991, 1988.

A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard. Reaxff:a reactive

force field for hydrocarbons. The Journal of Physical Chemistry A, 105:9396, 2001.

T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren. Neural network models

of potential energy surfaces. The Journal of Chemical Physics, 103:4129, 1995.

S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal

55

of Computational Physics, 117:1, 1995.

[33] Lammps molecular dynamics simulator. https://lammps.sandia.gov/.

[34] P. J. van Laarhoven and E. H. Aarts. Simulated annealing: Theory and applications.

Springer, 1987.

[35] L. V. Woodcock. Isothermal molecular dynamics calculations for liquid salts. Chemical Physics Letters, 10:257, 1971.

[36] S. Nos´e. A unified formulation of the constant temperature molecular dynamics

methods. The Journal of Chemical Physics, 81:511, 1984.

[37] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical

Review A, 31:1695, 1985.

[38] K. L. Geisinger, M. A. Spackman, and G. V. Gibbs. Exploration of structure, electron

density distribution, and bonding in coesite with Fourier and pseudoatom refinement

methods using single crystal X-ray diffraction data. The Journal of Chemical Physics,

91:3237, 1987.

[39] R. Stahl, C. Jung, H. D. Lutz, W. Kockelmann, and H. Jacobs. Kristallstrukturen

und wasserstoffbrueckenbindungen bei β-Be(OH)2 und !-Zn(OH)2 . Zeitschrift fuer

Anorganische und Allgemeine Chemie, 624:1130, 1998.

[40] M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt. Development of interatomic

potentials appropriate for simulation of solid-liquid interface properties in Al-Mg

alloys. Philosophical Magazine, 89:3269, 2009.

[41] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O’keefe, and B. T. M. Willis. International tables for crystallography, volume C, chapter 6.1, page 554. Wiley, 2006.

[42] F. S. Varley. Neutron scattering lengths and cross sections. Neutron News, 3:29,

1992.

56

Appendix A

Calculation of the powder diffraction

pattern

This appendix describes the calculation of the powder diffraction pattern used in the

penalty function.

A.1 Formulation of the powder diffraction pattern

We calculate the powder diffraction pattern according to the following formula,

J(θ, R) = |S(θ, R)|2 L(θ)P (θ),

(A.1)

where θ is the diffraction angle, R is the crystal structure, S is the structure factor, L

is the Lorentz factor, and P is the polarization factor. In order to bring the theoretical

value closer to the experimental one, it is necessary to multiply this formula by additional

factors, such as the absorption factor and the temperature (Debye-Waller) factor. Since

these factors are complicated to calculate during the simulation, we omit them in the

calculation of the penalty function. On the other hand, the Lorentz factor and the polarization factor are expressed by the simple following formulas that depend only on the

diffraction angle,

L(θ) =

(A.2)

sin θ cos θ

P (θ) =

1 + cos2 (2θ)

(A.3)

The structure factor is the main part that depends on the atomic coordinates and is

expressed by the following formula,

S(θ, R) =

j=1

Fj (θ) exp(2πih · r˜j ),

(A.4)

where subscript j is the index of atoms, N is the number of atoms, r˜ is the atomic

fractional coordinate, h is the vector of the Miller index, and F is the atomic form factor.

From Bragg’s law, the diffraction angle corresponding to the Miller index h is as follows

57

A.1 Formulation of the powder diffraction pattern

(see Fig. A.1),

θh = arcsin

2dh

= arcsin

λ|Bh|

(A.5)

where λ is the wavelength, d is the inter-planar spacing, and B is the matrix consisting

of the reciprocal lattice vectors (b1 , b2 , b3 ).

Fig. A.1. Schematic diagram of Bragg’s law. The white circles are atoms arranged with

the inter-planar spacing d, and red arrows are rays with the wave length λ and

the diffraction angle θ. The path difference between the two rays is equal to

2d sin θ.

The atomic form factor depends on atomic species, and in the case of the X-ray diffraction, it is expressed by the following formula,

F (θ) =

i=1

ai exp −bi

sin θ

#2 +

+ c.

(A.6)

We use the database [41] for the parameters (a, b, c), which depend on atomic species. A

similar equation holds in the case of the neutron diffraction, and we also use the database

[42]. In the X-ray diffraction, the atomic form factor of hydrogen is much smaller than

that of a heavy atom, whereas in the neutron diffraction, it is relatively large and hydrogen

atoms can be detected.

58

Appendix A Calculation of the powder diffraction pattern

A.2 Diffraction peak smearing

In the equation A.1, the diffraction peak is a delta function at a diffraction angle θ, but

in the experiment, it has a finite peak width. We implement two smearing functions,

Gaussian smearing and Lorentzian smearing. The powder diffraction pattern with the

finite peak width is expressed by the following formula,

I(θ) =

J(θh )f (|θ − θh |),

(A.7)

where f is the smearing function. In our calculations, in order to reduce the computational

costs, f is regarded as zero at large |θ − θh |. Gaussian and Lorentzian smearing function

are as follows,

(θ − θh )2

fgaussian = √

exp −

(A.8)

2σ 2

2πσ

florentzian =

π (θ − θh )2 + γ 2

(A.9)

where σ is the standard deviation, and γ is the scale parameter. σ in Gaussian smearing

and γ in Lorentzian smearing correspond to the peak width, respectively.

In the Rietveld analysis [3], a smearing function that combines Gaussian and Lorentzian

smearings is used to reproduce the experimental result. In the structure prediction method

based on data assimilation, it is not necessary to accurately refine the peak width, but in

order to improve the search efficiency, it is better to set the peak width close to that in

the experiment.

A.3 Range of the Miller indices

The Miller index is an arbitrary integer, but the range of it to be considered is limited by

the range of the diffraction angle. Assuming that the range of the diffraction angle is [θm ,

θM ], from Eq. A.5, the range of the Miller index h is as follows,

4π sin θm

4π sin θM

≤ |Bh| ≤

(A.10)

Let r be the right side of Eq. A.10, and consider the upper limit of the Miller index.

Then, Eq. A.10 can be interpreted that the grid point h is included in the curved surface

S " (see Fig. A.2). S " is obtained on a linear transformation of the sphere S with radius

r by the inverse matrix B −1 = 2π

AT . A is the matrix consisting of the lattice vectors

(a1 , a2 , a3 ). It is sufficient to find the maximum value of the (x, y, z)-coordinates on the

curved surface S " .

59

A.3 Range of the Miller indices

Fig. A.2. Schematic diagram for finding the upper limit of the Miller index. The left

and right figures are transferred to each other on linear transformations by

the reciprocal lattice vectors B and the lattice vector A, respectively. The

white circles are the grid points corresponding to the Miller indices h. The

curved surface S is the sphere with radius r, and S ! is obtained on a linear

transformation of the sphere S. The maximum value of the x-coordinate on S !

is the x-coordinate of the tangent point with the normal vector (1, 0, 0) on S ! .

This point corresponds to the tangent point with the normal vector a1 on S.

The tangent plane at the point where the x-coordinate is maximum on S " is orthogonal

to x-axis and contains (0, 1, 0) and (0, 0, 1) vectors. The plane obtained on a linear

transformation of this tangent plane by the matrix B is the tangent plane of S and

contains the reciprocal lattice vectors b2 and b3 , that is, orthogonal to the lattice vector

a1 , b2 × b3 . Therefore, the tangent point on S is |ar1 | a1 , and the tangent point on S " is

−1

a1 . Finally, the upper limit of the x-coordinate is expressed as follows,

|a1 | B

r % −1 &

r % T &

B a1 x =

A a1 x =

|a1 |.

|a1 |

2π|a1 |

(A.11)

Since the same applies to the lower limit of the x-coodinate and the limits of the y and

z-coordinates, the upper and lower limits of the Miller index h are as follows.

|a1 |, ± |a2 |, ± |a3 | .

(A.12)

60

Appendix A Calculation of the powder diffraction pattern

A.4 Derivative with respect to atomic coordinates

In order to calculate the force applied to each atom from the penalty function, it is

necessary to differentiate the diffraction pattern with respect to the atomic coordinates.

From Appendix A.1, only the structure factor depends on the atomic coordinates. The

derivative of the structural factor with respect to the atomic coordinates can be calculated

as follows,

∂S

∂ !

Fj (θ) exp(2πih · r˜j )

∂r

∂r j=1

Fj (θ)

j=1

j=1

j=1

(A.13)

exp(2πih · A−1 rj )

∂rj

Fj (θ) exp(2πih · r˜j ) × 2πi

1 T

(h ·

B rj )

∂rj

Fj (θ) exp(2πih · r˜j ) × iBh

= iSBh.

(A.14)

(A.15)

(A.16)

(A.17)

The stress tensor can be calculated by differentiating with respect to the cell parameters.

As Eq. A.5 shows, the diffraction angle θ depends on the cell parameters, so it is sufficient

to differentiate with respect to θ. However, as seen in Eq. A.7, the smearing function also

depend on θ, and its derivative is very large near the peak position. In order to optimize

the cell parameters by the structure prediction method based on data assimilation, it is

necessary to define a penalty function which is smooth for changes in the peak position.

61

Appendix B

Crystallographic data in this study

This appendix shows the crystallographic data in this study.

B.1 Coesite

Table. B.1. The correct structure of the target material coesite used in Section 3.1 [38].

Lattice parameters

A, degree)

a = 7.1367

b = 12.3695

c = 7.1190

α = 90.00

β = 119.57

γ = 90.00

Atomic coordinates

(fractional)

Si (0.18197, 0.14169, 0.07227)

Si (0.81803, 0.85831, 0.92773)

Si (0.81803, 0.14169, 0.42773)

Si (0.18197, 0.85831, 0.57227)

Si (0.68197, 0.64169, 0.07227)

Si (0.31803, 0.35831, 0.92773)

Si (0.31803, 0.64169, 0.42773)

Si (0.68197, 0.35831, 0.57227)

Si (0.28394, 0.09194, 0.54066)

Si (0.71606, 0.90806, 0.45934)

Si (0.71606, 0.09194, 0.95934)

Si (0.28394, 0.90806, 0.04066)

Si (0.78394, 0.59194, 0.54066)

Si (0.21606, 0.40806, 0.45934)

Si (0.21606, 0.59194, 0.95934)

Si (0.78394, 0.40806, 0.04066)

O (0.07598, 0.12685, 0.55943)

O (0.92402, 0.87315, 0.44057)

O (0.92402, 0.12685, 0.94057)

O (0.07598, 0.87315, 0.05943)

O (0.57598, 0.62685, 0.55943)

O (0.42402, 0.37315, 0.44057)

O (0.42402, 0.62685, 0.94057)

O (0.57598, 0.37315, 0.05943)

(0.26683,

(0.73317,

(0.73317,

(0.26683,

(0.76683,

(0.23317,

(0.23317,

(0.76683,

(0.28918,

(0.71082,

(0.71082,

(0.28918,

(0.78918,

(0.21082,

(0.21082,

(0.78918,

(0.00000,

(0.00000,

(0.50000,

(0.50000,

(0.25000,

(0.75000,

(0.75000,

(0.25000,

0.14625,

0.85375,

0.14625,

0.85375,

0.64625,

0.35375,

0.64625,

0.35375,

0.03805,

0.96195,

0.03805,

0.96195,

0.53805,

0.46195,

0.53805,

0.46195,

0.36631,

0.63369,

0.86631,

0.13369,

0.25000,

0.75000,

0.25000,

0.75000,

0.32787)

0.67213)

0.17213)

0.82787)

0.32787)

0.67213)

0.17213)

0.82787)

0.02165)

0.97835)

0.47835)

0.52165)

0.02165)

0.97835)

0.47835)

0.52165)

0.25000)

0.75000)

0.25000)

0.75000)

0.00000)

0.00000)

0.50000)

0.50000)

62

Appendix B Crystallographic data in this study

B.2 !-Zn(OH)2

Table. B.2. The correct structure of the target material &-Zn(OH)2 used in Section 3.2

[39].

Lattice parameters

A, degree)

a = 4.87176

b = 5.06348

c = 8.75226

α = 90.00

β = 90.00

γ = 90.00

Atomic coordinates

(fractional)

Zn (0.067570, 0.642226, 0.123390)

Zn (0.432430, 0.357774, 0.623390)

Zn (0.932430, 0.142226, 0.376610)

Zn (0.567570, 0.857774, 0.876610)

H (0.030919, 0.641940, 0.847283)

H (0.469081, 0.358060, 0.347283)

H (0.969081, 0.141940, 0.652717)

H (0.530919, 0.858060, 0.152717)

H (0.242591, 0.824785, 0.658357)

H (0.257409, 0.175215, 0.158357)

(0.757409,

(0.742591,

(0.120869,

(0.379131,

(0.879131,

(0.620869,

(0.188286,

(0.311714,

(0.811714,

(0.688286,

0.324785,

0.675215,

0.111773,

0.888227,

0.611773,

0.388227,

0.316113,

0.683887,

0.816113,

0.183887,

0.841643)

0.341643)

0.577116)

0.077116)

0.922884)

0.422884)

0.228961)

0.728961)

0.271039)

0.771039)

B.3 Al-Ca-H

Table. B.3. The new Al12 Ca20 H76 structure proposed in Section 3.3.

Lattice parameters

A, degree)

a = 12.809756

b = 12.809756

c = 6.814734

α = 90.00

β = 90.00

γ = 90.00

Atomic coordinates

(fractional)

Al (0.500011, 0.005163,

Al (0.003018, 0.505047,

Al (0.502574, 0.005254,

Al (0.331902, 0.335357,

Al (0.168770, 0.836904,

Al (0.839311, 0.163375,

Al (0.663408, 0.663518,

Al (0.831443, 0.834761,

Al (0.668759, 0.336545,

Al (0.338640, 0.663467,

Al (0.163486, 0.163750,

Al (1.000437, 0.505635,

0.537170)

0.537047)

0.037029)

0.224586)

0.222126)

0.215090)

0.214548)

0.727048)

0.722520)

0.715482)

0.712352)

0.036693)

(0.393267,

(0.429963,

(0.247695,

(0.304244,

(0.104170,

(0.199422,

(0.275273,

(0.251859,

(0.090047,

(0.110123,

(0.389815,

(0.302659,

0.766778,

0.705195,

0.602437,

0.565146,

0.894427,

0.934485,

0.889934,

0.746446,

0.932491,

0.736419,

0.232646,

0.434728,

0.863840)

0.535184)

0.873155)

0.542758)

0.710286)

0.043467)

0.362151)

0.129567)

0.312873)

0.369379)

0.368334)

0.048838)

B.3 Al-Ca-H

Ca (0.015420, -0.004752, 0.039557)

Ca (0.484803, 0.491280, 0.040281)

Ca (0.514707, 0.494307, 0.541170)

Ca (0.982685, 0.989151, 0.537713)

Ca (0.932544, 0.727437, 0.229506)

Ca (0.432343, 0.773718, 0.220318)

Ca (0.567838, 0.226603, 0.228757)

Ca (0.067889, 0.273081, 0.217527)

Ca (0.220985, 0.572058, 0.218955)

Ca (0.279747, 0.072355, 0.214524)

Ca (0.725710, 0.928484, 0.226622)

Ca (0.776591, 0.427751, 0.223853)

Ca (0.432544, 0.226399, 0.729145)

Ca (0.933172, 0.272773, 0.720397)

Ca (0.067933, 0.725746, 0.728927)

Ca (0.567350, 0.772103, 0.721009)

Ca (0.720780, 0.072674, 0.718421)

Ca (0.779762, 0.572221, 0.715348)

Ca (0.226267, 0.429268, 0.725852)

Ca (0.275707, 0.928949, 0.723158)

H (0.962768, 0.518215, 0.793265)

H (0.041755, 0.496431, 0.293066)

H (0.948064, 0.627964, 0.523266)

H (0.055494, 0.385916, 0.584412)

H (0.120078, 0.562359, 0.594489)

H (0.880794, 0.451961, 0.513059)

H (0.885366, 0.560309, 0.108509)

H (0.122494, 0.454243, 1.004958)

H (0.057008, 0.628784, 0.042721)

H (0.947454, 0.383660, 0.055655)

H (0.461099, 0.008106, 0.293226)

H (0.541870, 0.005978, 0.793358)

H (0.384702, 0.061043, 0.604221)

H (0.622056, 0.953058, 0.508453)

H (0.556149, 0.128408, 0.534006)

H (0.446979, 0.884057, 0.568232)

H (0.380434, 0.953085, 0.007598)

H (0.619000, 0.061626, 0.101415)

H (0.555263, 0.884589, 0.072071)

H (0.446988, 0.128357, 0.031924)

H (0.243024, 0.751148, 0.647358)

H (0.442122, 0.587476, 0.788658)

(0.415507,

(0.435968,

(0.227379,

(0.247598,

(0.073280,

(0.254947,

(0.258935,

(0.202937,

(0.107362,

(0.062637,

(0.755229,

(0.572095,

(0.758564,

(0.702528,

(0.607314,

(0.562899,

(0.801804,

(0.889878,

(0.916010,

(0.934911,

(0.727701,

(0.746668,

(0.699092,

(0.610534,

(0.774165,

(0.752661,

(0.587929,

(0.564135,

(0.883523,

(0.929624,

(0.893547,

(0.944753,

(0.742902,

(0.750116,

(0.605151,

(0.383282,

(0.618348,

(0.398676,

(0.899486,

(0.119240,

(0.804579,

(0.063647,

0.426118,

0.308499,

0.389938,

0.247117,

0.208127,

0.103135,

0.253491,

0.068335,

0.264613,

0.083103,

0.603578,

0.705949,

0.753375,

0.567688,

0.765620,

0.583327,

0.933755,

0.731794,

0.924802,

0.807369,

0.890272,

0.746553,

0.434587,

0.234624,

0.390176,

0.246713,

0.429989,

0.309860,

0.112002,

0.205285,

0.268716,

0.090128,

0.250292,

0.101437,

0.394932,

0.613126,

0.613711,

0.397375,

0.899628,

0.115050,

0.064654,

0.810769,

63

0.316167)

0.052714)

0.366369)

0.130386)

0.533699)

0.870501)

0.650720)

0.538267)

0.864283)

0.779928)

0.372325)

0.035581)

0.150522)

0.040467)

0.364382)

0.284326)

0.550899)

0.869815)

0.817192)

0.553836)

0.868660)

0.634524)

0.544864)

0.868264)

0.863575)

0.630062)

0.813679)

0.552110)

0.676588)

0.033478)

0.361043)

0.288546)

0.147886)

0.374681)

0.211249)

0.176826)

0.671557)

0.721478)

0.226555)

0.167075)

0.043351)

0.052614)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る