リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analyses of genetic and retinal lesions in Ccdc85c knockout rats: a rat model of genetic hydrocephalus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analyses of genetic and retinal lesions in Ccdc85c knockout rats: a rat model of genetic hydrocephalus

小西 静香 大阪府立大学 DOI:info:doi/10.24729/00017719

2022.07.05

概要

Hydrocephalus is a disease in which cerebrospinal fluid (CSF) accumulates in the ventricles of the brain, increasing pressure in the brain, causing ventricular dilatation and atrophy of brain parenchyma, and their associated impairment of brain function and development. In addition, human congenital hydrocephalus is one of the most frequent birth defects, occurring in about 1 in 1000 newborns. Animal models are expected to contribute to the elucidation of pathogenesis (Tully and Dobyns, 2014).

There are many congenital diseases caused by abnormalities in neural developmental for which the cause is unknown and for which no cure has been established. The developmental anomalies of central nervous system (CNS) include variety of diseases such as Dandy-Walker syndrome, Chiari malformation, hydrocephalus and neuronal migration disorders (for example lissencephaly and cortical heterotopia). In Japan, neuronal migration disorders are recognized as an intractable disease by Ministry of Health, Labor and Welfare (Kanatani et al., 2017).

Hemorrhagic hydrocephalus (hhy) mouse is a spontaneous mutant with hydrocephalus, brain hemorrhage and formation of subcortical band heterotopia found in the Department of Biological Science, Osaka Prefecture University (Kuwamura et al., 2004). Previous studies demonstrated that the hydrocephalus is caused by an ependymal agenesis and the subcortical heterotopia is due to an abnormal migration of neurons in hhy mice (Mori et al., 2012). It was found to be caused by a defect in the coiled-coil domain-containing 85c (Ccdc85c) gene on mouse chromosome 12. In hhy mice, in addition to hydrocephalus, cerebral hemorrhage and subcortical heterotopia found in the brain, retinal dysplasia characterized by rosette structure formation was observed in the eye (unpublished data).

In order to analyze the function of CCDC85C protein, multifaceted functional analysis using multiple animal species is necessary. Therefore, in a previous study in our laboratory, we generated Ccdc85c knockout (KO) rats with the F344 strain as a background strain by genome editing engineering using a highly active variant of transcription activator-like effector nuclease (TALEN), Platinum TALEN. Previous studies showed that hydrocephalus was also observed in Ccdc85c KO rats, and that they can be used as an animal model for hydrocephalus similar to hhy mice.

In this study, the author aimed to analyze the detailed function of the CCDC85C protein, clarified the defective gene sequence in the Ccdc85c KO rats, and examined the morphogenesis of the retina, which is a part of the central nervous system as well as the brain, in detail in rats.

この論文で使われている画像

参考文献

Abdelhamed Z., Vuong S.M., Hill L., Shula C., Timms A., Beier D., Campbell K., Mangano F.T., Stottmann R.W., and Goto J. 2018. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development. 145: 1-11.

Adams N.A., Awadein A., and Toma H.S. 2007. The retinal ciliopathies. Ophthalmic Genet. 28:113-25.

Adams M., Smith U.M., Logan C.V., and Johnson C.A. 2008. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet. 45:257-67

Amos-Landgraf J.M., Kwong L.N., Kendziorski C.M., Reichelderfer M., Torrealba J., Weichert J., Haag J.D., Chen K.-S., Waller J.L., Gould M.N., and Dove W.F. 2007. A targetselected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci USA. 104: 4036–41.

Bassett E.A., and Wallace V.A. 2012. Cell fate determination in the vertebrate retina. Trends Neurosci. 35:565-73.

Birtel J., Eisenberger T., Gliem M., Müller P.L., Herrmann P., Betz C., Zahnleiter D., Neuhaus C., Lenzner S., Holz F.G., Mangold E., Bolz H.J., and Charbel Issa P. 2018. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep. 8:4824.

Burstein J., Papile L.A., and Burstein R. 1979. Intraventricular hemorrhage and hydrocephalus in premature newborns: a prospective study with CT. AJR Am J Roentgenol. 132: 631–5.

Daruich A., Matet A., Moulin A., Kowalczuk L., Nicolas M., Sellam A., Rothschild P.R., Omri S., Gélizé E., Jonet L., Delaunay K., De Kozak Y., Berdugo M., Zhao M., Crisanti P., and Behar-Cohen F. 2018. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 63:20-68.

Fitzgerald M.P., Covio M., and Lee K.S. 2011. Disturbances in the positioning, proliferation and apoptosis of neural progenitors contribute to subcortical band heterotopia formation. Neuroscience. 176: 455-71.

Franze K., Grosche J., Skatchkov S.N., Schinkinger S., Foja C., Schild D., Uckermann O., Travis K., Reichenbach A., and Guck J. 2007. Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A. 104:8287-92.

Hamel C.P. 2007. Cone rod dystrophies. Orphanet J Rare Dis. 1:2-7

Hasan D., Vermeulen M., Wijdicks E.F.M., Hydra A., and Van Gijn J. 1989. Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke. 20: 747-53.

Hoon M., Okawa H., Della Santina L., and Wong R.O. 2014. Functional architecture of the retina: development and disease. Prog Retin Eye Res. 42:44-84.

Ibañez-Tallon I., Pagenstecher A., Fliegauf M., Olbrich H., Kispert A., Ketelsen U.P., North A., Heintz N., and Omran H. 2004. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymanl flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet. 13: 2133–41.

Jing C., Zhang H., Shishido H., Keep R.F., and Hua Y. 2018. Association of brain CD163 expression and brain injury/hydrocephalus development in a rat model of subarachnoid hemorrhage. Front Neurosci. 12: 313.

Jing C., Zhang H., Shishido H., Keep R.F., and Hua Y. 2018. Association of brain CD163 expression and brain injury/hydrocephalus development in a rat model of subarachnoid hemorrhage. Front Neurosci. 12: 313.

Jones H.C., Carter B.J., Depelteau J.S., Roman M., and Morel L. 2001. Chromosomal linkage associated with disease severity in the hydrocephalic H-Tx rat. Behav Genet. 31: 101–11.

Kanatani Y., Tomita N., Sato Y., Eto A., Omoe H. and Mizushima H. 2017. National Registry of Designated Intractable Diseases in Japan: Present Status and Future Prospects. Neurol Med Chir (Tokyo). 57:1-7.

Kohn D.F., Chinookoswong N., and Chou S.M. 1981. A new model of congenital hydrocephalus in the rat. Acta Neuropathol. 54: 211–8.

Konishi S., Tanaka N., Mashimo T., Yamamoto T., Sakuma T., Kaneko T., Tanaka M., Izawa T., Yamate J., and Kuwamura M. 2020. Pathological characteristics of Ccdc85c knockout rats: a rat model of genetic hydrocephalus. Exp Anim. 69:26-33.

Kuwamura M., Kinoshita A., Okumoto M., Yamate J., and Mori N. 2004. Hemorrhagic hydrocephalus (hhy): A novel mutation on mouse chromosome 12. Dev Brain Res. 152: 69– 72.

Kuzmanovic M., Dudley V.J., and Sarthy V.P. 2003. GFAP promoter drives Muller cellspecific expression in transgenic mice. Invest Ophthalmol Vis Sci. 44:3606-13.

Lang J. 1992. Topographic anatomy of preformed intracranial spaces. Acta Neurochir Suppl. 54:1-10.

Lechtreck K.F., Delmotte P., Robinson M.L., Sanderson M.J., and Witman G.B. 2008. Mutations in Hydin impair ciliary motility in mice. J Cell Biol. 180:633-43.

Lee K.S., Schottler F., Collins J.L., Lanzino G., Couture D., Rao A., Hiramatsu K., Goto Y., Hong S.C., Caner H., Yamamoto H., Chen Z.F., Bertram E., Berr S., Omary R., Scrable H., Jackson T., Goble J., and Eisenman L. 1997. A genetic animal model of human neocortical heterotopia associated with seizures. J Neurosci. 17: 6236–42.

Lee L. 2013. Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 91:1117-32.

Liu Q., Zuo J., and Pierce E.A. 2004. The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci. 24:6427-36.

Lodhia K.R., Shakui P., and Keep R.F. 2006. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl. 96: 207–11

Masai I., Lele Z, Yamaguchi M, Komori A, Nakata A, Nishiwaki Y, Wada H, Tanaka H, Nojima Y, Hammerschmidt M, Wilson S.W., and Okamoto H. 2003. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development. 130: 2479–94.

Mashimo T., Takizawa A., Kobayashi J., Kunihiro Y., Yoshimi K., Ishida S., Tanabe K., Yanagi A., Tachibana A., Hirose J., Yomoda J. ichiro Morimoto S., Kuramoto T., Voigt B., Watanabe T., Hiai H., Tateno C., Komatsu K., and Serikawa T. 2012. Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2: 685–94.

Mori N., Kuwamura M., Tanaka N., Hirano R., Nabe M., Ibuki M., and Yamate J. 2012. Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice. Am J Pathol. 180: 314–27.

Omori Y., Chaya T., Katoh K., Kajimura N., Sato S., Muraoka K., Ueno S., Koyasu T., Kondo M., and Furukawa T. 2010. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci U S A. 107:22671-6.

Omri S., Omri B., Savoldelli M., Jonet L., Thillaye-Goldenberg B., Thuret G., Gain P., Jeanny J.C., Crisanti P., and Behar-Cohen F. 2010. The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol. 4:183-95.

Ouchi Y., Baba Y., Koso H., Taketo M.M., Iwamoto T., Aburatani H., and Watanabe S. 2011. β-Catenin signaling regulates the timing of cell differentiation in mouse retinal progenitor cells. Mol Cell Neurosci. 46: 770–80.

Picut C.A., and Coleman G.D. 2016a. Gastrointestinal Tract. pp. 127–71. In: Atlas of histology of the Juvenile rat. (Parker, G.A., and Picut, C.A. eds.), Academic Press, London

Picut C.A., Brown D.L., and Remick A.K. 2016b. Nervous System. pp. 45–87. In: Atlas of histology of the Juvenile rat. (Parker, G.A., and Picut, C.A. eds.), Academic Press, London.

Praveen K., Davis E.E., and Katsanis N. 2015. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Rep. 7:36.

Reichenbach A., and Bringmann A., 2013. New functions of Muller cells. Glia. 61:651-78

Sakuma T., Ochiai H., Kaneko T., Mashimo T., Tokumasu D., Sakane Y., Suzuki K.I., Miyamoto T., Sakamoto N., Matsuura S., and Yamamoto T. 2013. Repeating pattern of nonRVD variations in DNA-binding modules enhances TALEN activity. Sci Rep. 3: 3379.

Sawamoto K., Wichterle H., Gonzalez-Perez O., Cholfin J.A., Yamada M., Spassky N., Murcia N.S., Garcia-Verdugo J.M., Marin O., Rubenstein J.L., Tessier-Lavigne M., Okano H., and Alvarez-Buylla A. 2006. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 311:629-32.

Sisodiya S.M. 2004. Malformations of cortical development: Burdens and insights from important causes of human epilepsy. Lancet Neurol. 3: 29–38.

Somera K.C., and Jones H.C. 2004. Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus. Cell Tissue Res. 315: 361–73.

Sottocornola R., Royer C., Vives V., Tordella L., Zhong S., Wang Y., Ratnayaka I., Shipman M., Cheung A., Gaston-Massuet C., Ferretti P., Molnár Z., and Lu X. 2010. ASPP2 Binds Par-3 and Controls the Polarity and Proliferation of Neural Progenitors during CNS Development. Dev Cell. 19: 126–37.

Spassky N., .Merkle F.T., Flames N., Tramontin A.D., Garcı´a-Verdugo J., and AlvarezBuylla A. 2005. Adult ependymal cells are postmitotic and are derived from Radial Glial Cells during Embryogenesis. J Neurosci. 25: 10–18.

Tanaka N., Izawa T., Takenaka S., Yamate J., and Kuwamura M. 2015. Ccdc85c, a causative protein for hydrocephalus and subcortical heterotopia, is expressed in the systemic epithelia with proliferative activity in rats. Histol Histopathol. 30: 823-32.

Tissir F., Qu Y., Montcouquiol M., Zhou L., Komatsu K., Shi D., Fujimori T., Labeau J., Tyteca D., Courtoy P., Poumay Y., Uemura T., and Goffinet A.M. 2010. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 13: 700–7.

Tully H.M., and Dobyns W.B. 2014. Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet. 57:359-68.

Vieira J.P., Lopes P., and Silva R. 2012. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 27:938-41.

Walling B.E., and Marit G.B., 2016. The Eye and Harderian Gland. pp. 373–94. In: Atlas of histology of the Juvenile rat. (Parker, G.A., and Picut, C.A. eds.), Academic Press, London.

Wei X., Cheng Y., Luo Y., Shi X., Nelson S., and Hyde D.R. 2004. The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Dev Biol. 269: 286–301.

Yang J., Gao J., Adamian M., Wen X.H., Pawlyk B., Zhang L., Sanderson M.J., Zuo J., Makino C.L., and Li T. 2005. The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol. 25:4129-37.

Zheng M.H., Shi M., Pei Z., Gao F., Han H., and Ding Y.Q. 2009. The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain. 2: 38.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る