リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Supernatant from activated omentum accelerates wound healing in diabetic mice wound model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Supernatant from activated omentum accelerates wound healing in diabetic mice wound model

Li, Yu Hashikawa, Kazunobu Ebisawa, Katsumi Kambe, Miki Higuchi, Shinichi Kamei, Yuzuru 名古屋大学

2023.08

概要

Global diagnostic criteria for diabetes mellitus has been harmonized by the World Health
Organization, 8th edition of the International Diabetes Federation, and the American Diabetes
Association,1-3 According to these criteria, the current global diabetes prevalence is 8.8%, with a
further increase expected to be 9.9% by the year 2045.4 An increasing number of diabetes cases
and their complications have caused a heavy health and economic burden for patients and their
families. Furthermore, diabetic wounds (DWs) are the most common complications in patients
with diabetes mellitus, which is a result of poor glycemic control, narrowed peripheral vessels,
underlying neuropathy, and poor immune response.5 Thus far, the available therapeutic approaches
include good glycemic control, wound management, and surgical operation, but all of them have
limitations and none appear adequate to guarantee successful, conclusive, non-recurrent healing.
Hence, there is an urgent need for a therapeutic alternative to currently available treatments.
The omentum is a highly vascularized fibrous fatty layer of tissue located in the abdominal
cavity, serving as a layer of coverage and protection. It is known to possess healing potential for
over 100 years, mediated by omentum transportation, owing to its angiogenic, immunogenic, and
lymphatic properties.6-8 Goldsmith et al reported that omental transposition enhanced the healing
and regeneration of neurons across a transected spinal cord in animal (cat) experiments and in
one patient.9-11 Omental scaffolds or omentum-derived vascular fractions has been demonstrated
to promote peripheral nerve regeneration.12-14 Additionally, patients who underwent reconstructive surgery related to the omentum-free flap showed improved peripheral nerve regeneration
compared with other free flaps (in press). Further, it has been reported that the omentum can
be activated in the presence of foreign bodied. Once activated, the flimsy sheet-like omentum
not only increases in size and mass, but is also rich in growth factors,15-17 thus, prin oviding
important clues regarding the activation and application of the omentum in regenerative medicine.
However, the components of the activated omentum and their effects on diabetic wound healing
have not been investigated. The objective of this study was to investigate the exosomal protein
groups that contribute to wound healing in activated omentum conditioned medium (aOCM) by
mass spectrometry and to evaluate the effectiveness of aOCM on DWs using a diabetic mouse
wound model. ...

この論文で使われている画像

参考文献

1 American Diabeties Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in

Diabetes-2018. Diabetes care. 2018;41(Suppl 1):S13-S27. doi:10.2337/dc18-S002.

2 World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia:

report of a WHO/IDF consultation. https://apps.who.int/iris/handle/10665/43588. Accessed April 21, 2006.

3 Patterson CC, Karuranga S, Salpea P, et al. Worldwide estimates of incidence, prevalence and mortality of

type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes

Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107842. doi:10.1016/j.diabres.2019.107842.

4 Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current

situation and perspectives. Eur J Prev Cardiol. 2019;26(2_suppl):7–14. doi:10.1177/2047487319881021.

5 Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis,

molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615.

doi:10.1016/j.biopha.2019.108615.

6 Bilgiç T, İnce Ü, Narter F. Autologous omentum transposition for regeneration of a renal injury model in

rats. Mil Med Res. 2022;9(1):1. doi:10.1186/s40779-021-00361-0.

7 Krist LF, Eestermans IL, Steenbergen JJ, et al. Cellular composition of milky spots in the human greater

omentum: an immunochemical and ultrastructural study. Anat Rec. 1995;241(2):163–174. doi:10.1002/

ar.1092410204.

8 Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK. Vascular endothelial growth

factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J

Surg Res. 1997;67(2):147–154. doi:10.1006/jsre.1996.4983.

9 Goldsmith HS, Brandt M, Waltz T. Near total transaction of human spinal cord: a functional return following

omentum-collagen reconstruction. In: Goldsmith HS, ed. The omentum: application to brain and spinal

Nagoya J. Med. Sci. 85. 528–541, 2023

539

doi:10.18999/nagjms.85.3.528

Yu Li et al

cord. Wilton: Forefront Publishing; 2000:76–92.

10 Goldsmith HS. The evolution of omentum transposition: from lymphedema to spinal cord, stroke and

Alzheimer’s disease. Neurol Res. 2004;26(5):586–593. doi:10.1179/016164104225017622.

11 Goldsmith HS, de la Torre JC. Axonal regeneration after spinal cord transection and reconstruction. Brain

Res. 1992;589(2):217–224. doi:10.1016/0006-8993(92)91280-R.

12 Castañeda F, Kinne RK. Omental graft improves functional recovery of transected peripheral nerve. Muscle

Nerve. 2002;26(4):527–532. doi:10.1002/mus.10229.

13 Mohammadi R, Azizi S, Delirezh N, Hobbenaghi R, Amini K. Transplantation of uncultured omental

adipose-derived stromal vascular fraction improves sciatic nerve regeneration and functional recovery

through inside-out vein graft in rats. J Trauma Acute Care Surg. 2012;72(2):390–396. doi:10.1097/

TA.0b013e31821181dd.

14 Zhang YG, Huang JH, Hu XY, Sheng QS, Zhao W, Luo ZJ. Omentum-wrapped scaffold with longitudinally

oriented micro-channels promotes axonal regeneration and motor functional recovery in rats. PLoS One.

2011;6(12):e29184. doi:10.1371/journal.pone.0029184.

15 García-Gómez I, Goldsmith HS, Angulo J, et al. Angiogenic capacity of human omental stem cells. Neurol

Res. 2005;27(8):807–811. doi:10.1179/016164105X63674.

16 Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JA, Dunea G, Singh AK. Activated omentum becomes rich

in factors that promote healing and tissue regeneration. Cell Tissue Res. 2007;328(3):487–497. doi:10.1007/

s00441-006-0356-4.

17 Singh AK, Patel J, Litbarg NO, et al. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res. 2008;332(1):81–88.

doi:10.1007/s00441-007-0560-x.

18 Jones CG, Daniel Hare J, Compton SJ. Measuring plant protein with the Bradford assay: 1. Evaluation

and standard method. J Chem Ecol. 1989;15(3):979–992. doi:10.1007/BF01015193.

19 Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited.

Wound Repair Regen. 2015;23(6):874–877. doi:10.1111/wrr.12338.

20 Yang YW, Zhang CN, Cao YJ, et al. Bidirectional regulation of i-type lysozyme on cutaneous wound

healing. Biomed Pharmacother. 2020;131:110700. doi:10.1016/j.biopha.2020.110700.

21 Kobayashi H, Ebisawa K, Kambe M, et al. Effects of exosomes derived from the induced pluripotent stem

cells on skin wound healing. Nagoya J Med Sci. 2018;80(2):141–153. doi:10.18999/nagjms.80.2.141.

22 Stump A, Bedri M, Goldberg NH, Slezak S, Silverman RP. Omental transposition flap for sternal wound

reconstruction in diabetic patients. Ann Plast Surg. 2010;65(2):206–210. doi:10.1097/SAP.0b013e3181c9c31a.

23 Mazzaferro D, Song P, Massand S, Mirmanesh M, Jaiswal R, Pu LLQ. The Omental Free Flap—A Review

of Usage and Physiology. J Reconstr Microsurg. 2018;34(3):151–169. doi:10.1055/s-0037-1608008.

24 De Siena R, Balducci L, Blasi A, et al. Omentum-derived stromal cells improve myocardial regeneration

in pig post-infarcted heart through a potent paracrine mechanism. Exp Cell Res. 2010;316(11):1804–1815.

doi:10.1016/j.yexcr.2010.02.009.

25 Bahamondes F, Flores E, Cattaneo G, Bruna F, Conget P. Omental adipose tissue is a more suitable source

of canine Mesenchymal stem cells. BMC Vet Res. 2017;13(1):166. doi:10.1186/s12917-017-1053-0.

26 Singh AK, Pancholi N, Patel J, et al. Omentum facilitates liver regeneration. World J Gastroenterol.

2009;15(9):1057–1064. doi:10.3748/wjg.15.1057.

27 Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived

MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med.

2015;13:49. doi:10.1186/s12967-015-0417-0.

28 Memmert S, Nokhbehsaim M, Damanaki A, et al. Role of cathepsin S In periodontal wound healing-an in

vitro study on human PDL cells. BMC Oral Health. 2018;18(1):60. doi:10.1186/s12903-018-0518-2.

29 Flynn CM, Garbers Y, Düsterhöft S, et al. Cathepsin S provokes interleukin-6 (IL-6) trans-signaling through

cleavage of the IL-6 receptor in vitro. Sci Rep. 2020;10(1):21612. doi:10.1038/s41598-020-77884-4.

30 Shi GP, Sukhova GK, Kuzuya M, et al. Deficiency of the cysteine protease cathepsin S impairs microvessel

growth. Circ Res. 2003;92(5):493–500. doi:10.1161/01.RES.0000060485.20318.96.

31 Iorio V, Troughton LD, Hamill KJ. Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New

Rochelle). 2015;4(4):250–263. doi:10.1089/wound.2014.0533.

32 Swerts JP, Soula C, Sagot Y, et al. Hemopexin is synthesized in peripheral nerves but not in central

nervous system and accumulates after axotomy. J Biol Chem. 1992;267(15):10596–10600. doi:10.1016/

S0021-9528(19)50058-8.

33 Zhu Y, Qiu Y, Chen M, et al. Hemopexin is required for adult neurogenesis in the subventricular zone/

olfactory bulb pathway. Cell Death Dis. 2018;9(3):268. doi:10.1038/s41419-018-0328-0.

Nagoya J. Med. Sci. 85. 528–541, 2023

540

doi:10.18999/nagjms.85.3.528

Wound healing using activated omentum

34 Dong B, Zhang Z, Xie K, et al. Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after

cerebral ischemia-reperfusion injury. BMC Anesthesiol. 2018;18(1):2. doi:10.1186/s12871-017-0466-4.

35 Siriwach R, Ngo AQ, Higuchi M, et al. Single-cell RNA sequencing identifies a migratory keratinocyte

subpopulation expressing THBS1 in epidermal wound healing. iScience. 2022;25(4):104130. doi:10.1016/j.

isci.2022.104130.

36 Ashcroft GS, Kielty CM, Horan MA, Ferguson MW. Age-related changes in the temporal and spatial

distributions of fibrillin and elastin mRNAs and proteins in acute cutaneous wounds of healthy humans. J

Pathol. 1997;183(1):80–89. doi:10.1002/(SICI)1096-9896(199709)183:1<80::AID-PATH1104>3.0.CO;2-N.

37 Handa K, Abe S, Suresh VV, et al. Fibrillin-1 insufficiency alters periodontal wound healing failure in a

mouse model of Marfan syndrome. Arch Oral Biol. 2018;90:53–60. doi:10.1016/j.archoralbio.2018.02.017.

38 Zuliani-Alvarez L, Midwood KS. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain

with a Common Structure Controls Diverse Aspects of Wound Healing. Adv Wound Care (New Rochelle).

2015;4(5):273–285. doi:10.1089/wound.2014.0599.

39 Farrell DH. Pathophysiologic roles of the fibrinogen gamma chain. Curr Opin Hematol. 2004;11(3):151–155.

doi:10.1097/01.moh.0000131440.02397.a4.

40 Juhasz I, Murphy GF, Yan HC, Herlyn M, Albelda SM. Regulation of extracellular matrix proteins and

integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo.

Am J Pathol. 1993;143(5):1458–1469.

41 Schneider H, Mühle C, Pacho F. Biological function of laminin-5 and pathogenic impact of its deficiency.

Eur J Cell Biol. 2007;86(11–12):701–717. doi:10.1016/j.ejcb.2006.07.004.

42 Sinno H, Malholtra M, Lutfy J, et al. Topical application of complement C3 in collagen formulation

increases early wound healing. J Dermatolog Treat. 2013;24(2):141–147. doi:10.3109/09546634.2011.6319

77.

43 Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J. 2015;12(3):313–316. doi:10.1111/

iwj.12109.

44 Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc.

2000;5(1):40–46. doi:10.1046/j.1087-0024.2000.00014.x.

45 Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin

and the oral mucosa. Am J Physiol Cell Physiol. 2020;318(6):C1065-C1077. doi:10.1152/ajpcell.00035.2020.

46 Yin SL, Qin ZL, Yang X. Role of periostin in skin wound healing and pathologic scar formation. Chin

Med J (Engl). 2020;133(18):2236–2238. doi:10.1097/CM9.0000000000000949.

47 Argüeso P, Mauris J, Uchino Y. Galectin-3 as a regulator of the epithelial junction: Implications to wound

repair and cancer. Tissue Barriers. 2015;3(3):e1026505. doi:10.1080/21688370.2015.1026505.

48 Takaku S, Niimi N, Kadoya T, et al. Galectin-1 and galectin-3 as key molecules for peripheral nerve

degeneration and regeneration. AIMS Mol Sci. 2016;3(3):325–337. doi:10/3934/molsci.2016.3.325.

49 McLeod K, Walker JT, Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes:

insights for chronic skin wound therapeutics. J Cell Commun Signal. 2018;12(1):281–287. doi:10.1007/

s12079-018-0453-7.

50 Pastar I, Stojadinovic O, Yin NC, et al. Epithelialization in Wound Healing: A Comprehensive Review. Adv

Wound Care (New Rochelle). 2014;3(7):445–464. doi:10.1089/wound.2013.0473.

51 Klasan GS, Ivanac D, Erzen DJ, et al. Reg3G gene expression in regenerating skeletal muscle and corresponding nerve. Muscle Nerve. 2014;49(1):61–68. doi:10.1002/mus.23877.

52 Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, Schlaich M. Renalase, a novel soluble FADdependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry. 2010;15(3):234–236.

doi:10.1038/mp.2009.74.

53 Barrett PM, Topol EJ. The fibrillin-1 gene: unlocking new therapeutic pathways in cardiovascular disease.

Heart. 2013;99(2):83–90. doi:10.1136/heartjnl-2012-301840.

54 Sabatino M, Kim-Schulze S, Panelli MC, et al. Serum vascular endothelial growth factor and fibronectin

predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol. 2009;27(16):2645–2652.

doi:10.1200/JCO.2008.19.1106.

55 Fu H. Interleukin 35 Inhibits Ischemia-Induced Angiogenesis Essentially through the Key Receptor Subunit

Interleukin 12 Receptor Beta 2. Dissertation. Temple University; 2019. doi:10.34944/dspace/519.

56 Chamorro M, Carceller F, Llanos C, Rodríguez-Alvariño A, Colmenero C, Burgueño M. The effect of

omental wrapping on nerve graft regeneration. Br J Plast Surg. 1993;46(5):426–429. doi:10.1016/00071226(93)90050-L.

References End

Nagoya J. Med. Sci. 85. 528–541, 2023

541

doi:10.18999/nagjms.85.3.528

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る