リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Estimation of Water Transparency from Remote Sensing Data Based on A New Underwater Visibility Theory」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Estimation of Water Transparency from Remote Sensing Data Based on A New Underwater Visibility Theory

Jiang, Dalin 筑波大学 DOI:10.15068/0000055096

2020.07.22

概要

The water transparency, is a direct record of water optics and an important indicator of water quality. It is measured by the Secchi disk depth(ZSD) and has been a routine measurement in field survey of aquatic environments since the 1860s. Over a century later, the remote sensing technique has also been widely used for retrieving the ZSD values because of the technique's large area coverage and rapid data acquisition.

Lee et al. (2015) proposed a new theory for underwater visibility. Based on this new theory, Lee et al. (2015) also developed a semi-analytical algorithm for retrieving the ZSD from remote sensing data (termed as Lee15 hereafter). Generally, there are three requirements for accurately estimating ZSD when the Lee15 algorithm is used: (1) accurate measurements of remote sensing reflectance (Rrs); (2) accurate estimations of diffuse attenuation coefficient of downwelling irradiance (Kd); and (3) the proper values of KT/Kd ratios (KT is the diffuse attenuation coefficient of upwelling radiance).

However, challenges are still remained for each requirement. They are: (1)the widely used above-water approach for measuring Rrs suffers from the residual reflected skylight (Δ) effect, which will influence the accuracy of in situ Rrs; (2) the sixth version of quasi-analytical algorithm (QAA_v6) used for estimating absorption and backscattering coefficients (a and bb) often failed in turbid inland waters, and thus reduced the estimation accuracy of Kd; and (3) the KT/Kd ratio has been reported to be varied in a wide range. Therefore, the errors in Rrs, Kd and KT/Kd ratios will be finally propagated to the estimations of the ZSD.

To address the above challenges, first, I proposed a new simple method, which only required the in situ Rrs spectrum itself as input, to further remove the Δ effects in the in situ Rrs measurements. The performance of the proposed method was evaluated using both simulation data and in situ Rrs spectra measured using a radiance sensor with a black tube (Δ-free in situ Rrs). The results showed that the proposed method outperformed other existing methods and can be applied to various types of waters. In addition, the proposed method can improve the quality of Rrs spectra collected under various sky conditions (e.g., clear, scattered clouds and overcast). Second, I proposed a hybrid quasi-analytical algorithm (QAA_hybrid) instead of the QAA_v6 for retrieving more accurate a and bb even in turbid inland waters. Third, I proposed a new algorithm to estimate a dynamic KT/Kd ratio instead of using the fixed ratio in the original algorithm. The results obtained from in situ Rrs showed that the improved ZSD estimation algorithm gave more accurate ZSD estimations, with the root mean square error (RMSE) reduced from 2 m to 1.7 m, mean absolute percentage error (MAPE) reduced from 54 % to 35 % (N=472, ZSD ranges from 0.2 m to 45 m).

The improved ZSD estimation algorithm was applied to the 2003–2012 MERIS images for six Japanese lakes (i.e. Lakes Mashu, Kussharo, Inawashiro, Kasumigaura, Suwa and Biwa). The results obtained from 66 matchups demonstrated that the improved ZSD algorithm estimated ZSD values from MERIS data with the RMSE of 2 m and the MAPE of 38%, even though some overestimations were still observed in Lake Biwa due mainly to the imperfect atmospheric correction for satellite images. The satellite-derived long-term ZSD trends agreed well with that derived from the in situ long-term ZSD. The results indicate that the improved ZSD algorithm has good potential in monitoring ZSD from remote sensing data.

この論文で使われている画像

参考文献

Alikas, K., & Kratzer, S. (2017). Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecological Indicators, 77, 218-227.

Babin, M., & Stramski, D. (2002). Light absorption by aquatic particles in the near-infrared spectral region. Limnology and Oceanography, 47(3), 911-915.

Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., & Stramski, D. (2003). Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2), 843-859.

Bailey, S. W., Franz, B. A., & Werdell, P. J. (2010). Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics express, 18(7), 7521-7527.

Ban, M., Suzuki, T. (2003). Artificial growth of sockeye salmon in Lake Kussharo. Salmon・Mass Resource Management Center Technical Information, 169: 13-23.

Barnes, B. B., Garcia, R., Hu, C., & Lee, Z. (2018). Multi-band spectral matching inversion algorithm to derive water column properties in optically shallow waters: An optimization of parameterization. Remote Sensing of Environment, 204, 424-438.

Bernardo, N., Alcântara, E., Watanabe, F., Rodrigues, T., Carmo, A., Gomes, A., & Andrade, C. (2018). Glint removal assessment to estimate the remote sensing reflectance in inland waters with widely differing optical properties. Remote Sensing, 10(10), 1655.

Binding, C. E., Greenberg, T. A., Watson, S. B., Rastin, S., & Gould, J. (2015). Long term water clarity changes in North America's Great Lakes from multi-sensor satellite observations. Limnology and Oceanography, 60(6), 1976-1995.

Brewin, R. J., Dall'Olmo, G., Pardo, S., van Dongen-Vogels, V., & Boss, E. S. (2016). Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals. Remote sensing of environment, 183, 82-97.

Cai, L., Tang, D., & Li, C. (2015). An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data. Advances in Space Research, 56(2), 293-303.

Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., ... & Novak, M. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote sensing of environment, 205, 151-165.

Chen, Z., Muller-Karger, F. E., & Hu, C. (2007). Remote sensing of water clarity in Tampa Bay. Remote Sensing of Environment, 109(2), 249-259.

Choi, J. K., Park, Y. J., Ahn, J. H., Lim, H. S., Eom, J., & Ryu, J. H. (2012). GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. Journal of Geophysical Research: Oceans, 117(C9).

Choi, J. K., Park, Y. J., Lee, B. R., Eom, J., Moon, J. E., & Ryu, J. H. (2014). Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sensing of Environment, 146, 24-35.

Craig, S. E., Lohrenz, S. E., Lee, Z., Mahoney, K. L., Kirkpatrick, G. J., Schofield, O. M., & Steward, R. G. (2006). Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Applied Optics, 45(21), 5414-5425.

Dev, P. J., & Shanmugam, P. (2014). A new theory and its application to remove the effect of surface-reflected light in above-surface radiance data from clear and turbid waters. Journal of Quantitative Spectroscopy and Radiative Transfer, 142, 75-92.

Dierssen, H. M., Kudela, R. M., Ryan, J. P., & Zimmerman, R. C. (2006). Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnology and Oceanography, 51(6), 2646-2659.

Doerffer, R., and Schiller, H., 2008. MERIS Regional Coastal and Lake Case 2 Water Project - Atmospheric Correction ATBD. GKSS Research Center 21502 Geesthacht Version 1.0 18. May 2008.

Doron, M., Babin, M., Hembise, O., Mangin, A., & Garnesson, P. (2011). Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data. Remote Sensing of Environment, 115(12), 2986-3001.

Duntley, S. Q. (1952). The visibility of submerged objects. Visibility Lab., Mass. Inst. Tech (pp. 74). San Diego: Scripps Institution of Oceanography.

Froidefond, J. M., Gardel, L., Guiral, D., Parra, M., & Ternon, J. F. (2002). Spectral remote sensing reflectances of coastal waters in French Guiana under the Amazon influence. Remote Sensing of Environment, 80(2), 225-232.

Fukushima Prefecture. (2013). Inawashiro Lake and Urabandai Lake Aquatic Environment Conservation Promotion Project.

Fukushima, T., Matsushita, B., Oyama, Y., Yoshimura, K., Yang, W., Terrel, M., ... & Takegahara, A. (2016). Semi-analytical prediction of Secchi depth using remote-sensing reflectance for lakes with a wide range of turbidity. Hydrobiologia, 780(1), 5-20.

Fukushima, T., Matsushita, B., Yang, W., & Jaelani, L. M. (2018). Semi-analytical prediction of Secchi depth transparency in Lake Kasumigaura using MERIS data. Limnology, 19(1), 89- 100.

Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Science of the Total Environment, 268(1-3), 19-29.

Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied optics, 33(3), 443- 452.

Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., & Clark, D. K. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research: Atmospheres, 93(D9), 10909-10924.

Gower, J. F. R. (1980). Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet. Boundary-Layer Meteorology, 18(3), 235-245.

Gower, J., King, S., Borstad, G., & Brown, L. (2005). Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 26(9), 2005-2012.

Goyens, C., Jamet, C., & Schroeder, T. (2013). Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sensing of Environment, 131, 63-75.

Groetsch, P. M., Gege, P., Simis, S. G., Eleveld, M. A., & Peters, S. W. (2017). Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements. Optics express, 25(16), A742-A761.

Guanter, L., Del Carmen González-Sanpedro, M., & Moreno, J. (2007). A method for the atmospheric correction of ENVISAT/MERIS data over land targets. International Journal of Remote Sensing, 28(3-4), 709-728.

Guanter, L., Ruiz-Verdú, A., Odermatt, D., Giardino, C., Simis, S., Estellés, V., ... & Moreno, J. (2010). Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes. Remote Sensing of Environment, 114(3), 467-480.

Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574(7780), 667-670.

Hu, C. (2009). A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment, 113(10), 2118-2129.

Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1).

Huang, J., Chen, L., Chen, X., Tian, L., Feng, L., Yesou, H., & Li, F. (2014). Modification and validation of a quasi-analytical algorithm for inherent optical properties in the turbid waters of Poyang Lake, China. Journal of Applied Remote Sensing, 8(1), 083643.

IOCCG. 2014. Update of the Quasi-Analytical Algorithm (QAA_v6). Available online: http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf.

Jaelani, L. M., Matsushita, B., Yang, W., & Fukushima, T. (2013). Evaluation of four MERIS atmospheric correction algorithms in Lake Kasumigaura, Japan. International Journal of Remote Sensing, 34(24), 8967-8985.

Jaelani, L. M., Matsushita, B., Yang, W., & Fukushima, T. (2015). An improved atmospheric correction algorithm for applying MERIS data to very turbid inland waters. International Journal of Applied Earth Observation and Geoinformation, 39, 128-141.

Jiang, D., Matsushita, B., Setiawan, F., & Vundo, A. (2019). An improved algorithm for estimating the Secchi disk depth from remote sensing data based on the new underwater visibility theory. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 13-23.

Kabbara, N., Benkhelil, J., Awad, M., & Barale, V. (2008). Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5), 488-495.

Keeler, B. L., Polasky, S., Brauman, K. A., Johnson, K. A., Finlay, J. C., O’Neill, A., ... & Dalzell, B. (2012). Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proceedings of the National Academy of Sciences, 109(45), 18619-18624.

Kim, S. H., Yang, C. S., & Ouchi, K. (2015). Spatio-temporal patterns of Secchi depth in the waters around the Korean Peninsula using MODIS data. Estuarine, Coastal and Shelf Science, 164, 172-182.

Kirk, J. T. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge University Press.

Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote sensing of Environment, 82(1), 38-47.

Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K., & Sterckx, S. (2012). In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sensing of Environment, 120, 133-144.

Kou, L., Labrie, D., & Chylek, P. (1993). Refractive indices of water and ice in the 0.65-to 2.5-µm spectral range. Applied optics, 32(19), 3531-3540.

Kratzer, S., Brockmann, C., & Moore, G. (2008). Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sensing of Environment, 112(5), 2284-2300.

Kratzer, S., Håkansson, B., & Sahlin, C. (2003). Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. AMBIO: A Journal of the Human Environment, 32(8), 577-585.

Kutser, T., Vahtmäe, E., Paavel, B., & Kauer, T. (2013). Removing glint effects from field radiometry data measured in optically complex coastal and inland waters. Remote Sensing of Environment, 133, 85-89.

Le, C. F., Li, Y. M., Zha, Y., Sun, D., & Yin, B. (2009). Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2492-2500.

Lee, Z. P., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2).

Lee, Z., Ahn, Y. H., Mobley, C., & Arnone, R. (2010). Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. Optics Express, 18(25), 26313-26324.

Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied optics, 41(27), 5755-5772.

Lee, Z., Carder, K. L., Hawes, S. K., Steward, R. G., Peacock, T. G., & Davis, C. O. (1994). Model for the interpretation of hyperspectral remote-sensing reflectance. Applied Optics, 33(24), 5721-5732.

Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied optics, 37(27), 6329-6338.

Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Applied optics, 38(18), 3831-3843.

Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., & Brewin, R. (2013). Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing. Journal of Geophysical Research: Oceans, 118(9), 4241-4255.

Lee, Z., Shang, S., Du, K., & Wei, J. (2018). Resolving the long‐standing puzzles about the observed Secchi depth relationships. Limnology and Oceanography, 63(6), 2321-2336.

Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., & Lin, G. (2015a). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote sensing of environment, 169, 139-149.

Lee, Z., Wei, J., Voss, K., Lewis, M., Bricaud, A., & Huot, Y. (2015b). Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance. Applied Optics, 54(3), 546-558.

Luis, K. M., Rheuban, J. E., Kavanaugh, M. T., Glover, D. M., Wei, J., Lee, Z., & Doney, S. C. (2019). Capturing coastal water clarity variability with Landsat 8. Marine Pollution Bulletin, 145, 96-104.

Maritorena, S., Morel, A., & Gentili, B. (1994). Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and oceanography, 39(7), 1689-1703. Matsushita, B., Yang, W., Jaelani, L. M., Setiawan, F., & Fukushima, T. (2016). Monitoring Water Quality with Remote Sensing Image Data. Remote Sensing for Sustainability; CRC Press: Boca Raton, FL, USA, 163-189.

Matsushita, B., Yang, W., Yu, G., Oyama, Y., Yoshimura, K., & Fukushima, T. (2015). A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS journal of photogrammetry and remote sensing, 102, 28-37.

Mishra, S., Mishra, D. R., & Lee, Z. (2014). Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 375-388.

Mitchell, B. G., Kahru, M., Wieland, J., Stramska, M., & Mueller, J. L. (2002). Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean optics protocols for satellite ocean color sensor validation, Revision, 3(2), 231.

Mobley, C. D. (1994). Light and water: radiative transfer in natural waters. Academic press.

Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied optics, 38(36), 7442-7455.

Moore, T. S., Dowell, M. D., Bradt, S., & Verdu, A. R. (2014). An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote sensing of environment, 143, 97-111.

Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of oceanography, 1, 22.

National Institute for Environmental Studies (2016) Lake Kasumigaura Database, National Institute for Environmental Studies, Japan. Accessed via http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html on 29-05-2018.

Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854-866.

Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota's 10,000 lakes. Remote Sensing of Environment, 112(11), 4086-4097.

Olmanson, L. G., Brezonik, P. L., Finlay, J. C., & Bauer, M. E. (2016). Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 119-128.

Philpot, W. D. (1989). Bathymetric mapping with passive multispectral imagery. Applied optics, 28(8), 1569-1578.

Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied optics, 36(33), 8710-8723.

Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and oceanography, 31(5), 909-926.

Qiu, Z. (2013). A simple optical model to estimate suspended particulate matter in Yellow River Estuary. Optics Express, 21(23), 27891-27904.

Rodrigues, T., Alcântara, E., Watanabe, F., & Imai, N. (2017). Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme. Remote Sensing of Environment, 198, 213-228.

Ruddick, K. G., De Cauwer, V., Park, Y. J., & Moore, G. (2006). Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnology and Oceanography, 51(2), 1167-1179.

Ruddick, K. G., Ovidio, F., & Rijkeboer, M. (2000). Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied optics, 39(6), 897-912.

Ruddick, K., De Cauwer, V., & Van Mol, B. (2005). Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data. Remote Sensing of the Coastal Oceanic Environment. International Society for Optics and Photonics.

Secchi, P. A. (1864). Relazione delle esperienze fatte a bordo della pontificia pirocorvetta Imacolata Concezione per determinare la trasparenza del mare. Memoria del PA Secchi. Il Nuovo Cimento Giornale de Fisica, Chimica e Storia Naturale, Ottobre 1864, Published 1865, 20, 205-237.

Setiawan, F., Matsushita, B., Hamzah, R., Jiang, D., & Fukushima, T. (2019). Long-term change of the Secchi disk depth in Lake Maninjau, Indonesia shown by Landsat TM and ETM+ data. Remote Sensing, 11(23), 2875.

Shang, S., Lee, Z., Shi, L., Lin, G., Wei, G., & Li, X. (2016). Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sensing of Environment, 186, 22-31.

Song, K., Li, L., Tedesco, L. P., Li, S., Clercin, N. A., Hall, B. E., ... & Shi, K. (2012). Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Science of the Total Environment, 426, 220-232.

Spyrakos, E., O'Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G., ... & Bresciani, M. (2018). Optical types of inland and coastal waters. Limnology and Oceanography, 63(2), 846-870.

Stock, A. (2015). Satellite mapping of Baltic Sea Secchi depth with multiple regression models. International Journal of Applied Earth Observation and Geoinformation, 40, 55-64.

Tsunogai, U., Daita, S., Komatsu, D. D., Nakagawa, F., & Tanaka, A. (2011). Quantifying nitrate dynamics in an oligotrophic lake using ∆17O. Biogeosciences, 8(3), 687-702.

Tyler, J. E. (1968). The secchi disc. Limnology and oceanography, 13(1), 1-6.

Vahtmäe, E., Kutser, T., Martin, G., & Kotta, J. (2006). Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study. Remote Sensing of Environment, 101(3), 342-351.

Wang, M., & Shi, W. (2007). The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express, 15(24), 15722-15733.

Wang, M., Son, S., & Shi, W. (2009). Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment, 113(3), 635-644.

Wang, Y., Shen, F., Sokoletsky, L., & Sun, X. (2017). Validation and Calibration of QAA Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and Coastal Waters. Remote Sensing, 9(11), 1192.

Watanabe, F., Mishra, D. R., Astuti, I., Rodrigues, T., Alcântara, E., Imai, N. N., & Barbosa, C. (2016). Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 28-47.

Wei, J., Lee, Z., & Shang, S. (2016). A system to measure the data quality of spectral remote- sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans, 121(11), 8189-8207.

Wernand, M. R. (2010). On the history of the Secchi disc. Journal of the European Optical Society- Rapid publications, 5.

Yang, W., Matsushita, B., Chen, J., & Fukushima, T. (2011). Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables. Remote sensing of environment, 115(5), 1247-1259.

Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2013). Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3761-3773.

Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2014). Application of a semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland waters. IEEE Geoscience and Remote Sensing Letters, 11(6), 1046-1050.

Yang, W., Matsushita, B., Yoshimura, K., Chen, J., & Fukushima, T. (2015). A Modified Semianalytical Algorithm for Remotely Estimating Euphotic Zone Depth in Turbid Inland Waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1545-1554.

Yarger H.L. & McCauley J.R. (1975) Quantitative water quality with Landsat and Skylab. In Proc., NASA Earth Resources Survey Symposium, Houston, pp.347–369.

Zhang, M., Tang, J., Dong, Q., Song, Q., & Ding, J. (2010). Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2), 392-403.

Zhang, X., Hu, L., & He, M. X. (2009). Scattering by pure seawater: effect of salinity. Optics Express, 17(7), 5698-5710.

Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., & An, S. (2011). Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Advances in Water Resources, 34(2), 165-173.

Zibordi, G., Holben, B., Hooker, S. B., Mélin, F., Berthon, J. F., Slutsker, I., ... & Schuster, G. (2006). A network for standardized ocean color validation measurements. Eos, Transactions American Geophysical Union, 87(30), 293-297.

Zibordi, G., Ruddick, K., Ansko, I., Moore, G., Kratzer, S., Icely, J., & Reinart, A. (2012). In situ determination of the remote sensing reflectance: an inter-comparison. Ocean Science, 8(4), 567-586.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る