リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae

Zeng, Qingzhong 大阪大学 DOI:10.18910/93005

2023.09.25

概要

Title

Pib2 is a cysteine sensor involved in TORC1
activation in Saccharomyces cerevisiae

Author(s)

Zeng, Qingzhong

Citation

大阪大学, 2023, 博士論文

Version Type VoR
URL

https://doi.org/10.18910/93005

rights
Note

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

Form 3

Abstract of Thesis
Name

Title



Qingzhong Zeng



Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae

(出芽酵母においてTORC1活性化に関与するシステインセンサーPib2の研究)

Abstract of Thesis
TORC1 is a master regulator that integrates information from multiple upstream signals and phosphorylates substrates to
promote anabolism and cell growth, upon amino acids were sufficient. In the absence of amino acids, TORC1 is inactive and
autophagy is induced to degrade intracellular proteins for recycling amino acids. It is activated via two distinct upstream
pathways, the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. In mammals, it has been reported that
several amino acid sensors regulate GATOR2-GATOR1-Rag GTPase axis to trigger TORC1 activity. However, how amino acids
are sensed is poorly understood in Saccharomyces cerevisiae. Sch9, one of the TORC1 substrates, is phosphorylated via the Pib2
pathway and the Gtr pathway. Ser3, a novel TORC1 substrate, is phosphorylated by the Pib2 pathway and not by the Gtr pathway.
In this study, using the phosphorylation state of Sch9 and Ser3 as indicators of TORC1 activity, I investigated which pathways
were employed in TORC1 activation by individual amino acid. Different amino acids exhibited different dependencies on the Gtr
and Pib2 pathways.
Cysteine was the amino acid most dependent on the Pib2 pathway. Cysteine induces a dose-dependent increase in the
interaction between TOR1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two
critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functioning as a sensor
for cysteine in TORC1 regulation.

様式7

論文審査の結果の要旨及び担当者



(職)

論文審査担当者











( Qingzhong Zeng )





教授

野田

健司

教授

深川

竜郎

教授

池田

史代

准教授

岡本

浩二

論文審査の結果の要旨
Qingzhong

Zeng氏 は 、 ア ミ ノ 酸 を は じ め と す る 栄 養 情 報 を 統 合 し 、 タ ン パ ク 質

合 成 な ど 同 化 過 程 や オ ー ト フ ァ ジ ー な ど 異 化 過 程 を コ ン ト ロ ー ル す る マ ス タ ー
制 御 因 子 TORC1の 制 御 機 構 を 研 究 し た 。 出 芽 酵 母 Pib2タ ン パ ク 質 は 、 GTRタ ン パ
ク 質 複 合 体 と 独 立 し て 共 に TORC1を 上 流 か ら 制 御 す る 。 二 十 種 の ア ミ ノ 酸 が こ れ
ら 上 流 の 制 御 機 構 に よ り 、 ど の 様 に 識 別 さ れ る の か を 解 析 し た 。 そ の な か で 特
に シ ス テ イ ン が Pib2依 存 の TORC1活 性 を も た ら す こ と に 着 目 し 、 シ ス テ イ ン が 直
接 Pib2タ ン パ ク 質 に 結 合 し て TORC1を 活 性 化 す る シ ス テ イ ン セ ン サ ー タ ン パ ク
質 と し て 機 能 す る こ と を 明 ら か に し た 。 こ れ ら の 内 容 は ア ミ ノ 酸 感 知 機 構 の 実
体 を 明 ら か に し た も の と し て 高 く 評 価 さ れ 、博士の学位を授与するに値するものと認める。なお、
チェックツール“iThenticate”を使用し、剽窃、引用漏れ、二重投稿等のチェックを終えていることを申し添えます。

この論文で使われている画像

参考文献

1. Vézina, C., Kudelski, A., and Sehgal, S.N. (1975). Rapamycin (AY-22,989), a new

antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of

the active principle. J. Antibiot. (Tokyo) 28, 721–726. 10.7164/antibiotics.28.721.

2. Douros, J., and Suffness, M. (1981). New antitumor substances of natural origin.

Cancer Treat. Rev. 8, 63–87. 10.1016/S0305-7372(81)80006-0.

3. Martel, R.R., Klicius, J., and Galet, S. (1977). Inhibition of the immune response by

rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 55, 48–51.

10.1139/y77-007.

4. Rosen, M., Standaert, R., Galat, A., Nakatsuka, M., and Schreiber, S. (1990).

Inhibition of FKBP Rotamase Activity by Immunosuppressant FK506: Twisted

Amide Surrogate. Science 248, 863–866. 10.1126/science.1693013.

5. Standaert, R.F., Galat, A., Verdine, G.L., and Schreiber, S.L. (1990). Molecular

cloning and overexpression of the human FKS06-binding protein FKBP. Nature 346,

671–674. 10.1038/346671a0.

6. Heitman, J., Movva, N.R., and Hall, M.N. (1991). Targets for cell cycle arrest by the

immunosuppressant rapamycin in yeast. Science 253, 905–909.

10.1126/science.1715094.

7. Chen, J., Zheng, X.F., Brown, E.J., and Schreiber, S.L. (1995). Identification of an

11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-

70

rapamycin-associated protein and characterization of a critical serine residue. Proc.

Natl. Acad. Sci. 92, 4947–4951. 10.1073/pnas.92.11.4947.

8. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S.H.

(1994). RAFT1: A mammalian protein that binds to FKBP12 in a rapamycindependent fashion and is homologous to yeast TORs. Cell 78, 35–43. 10.1016/00928674(94)90570-3.

9. Sabers, C.J., Martin, M.M., Brunn, G.J., Williams, J.M., Dumont, F.J., Wiederrecht,

G., and Abraham, R.T. (1995). Isolation of a Protein Target of the FKBP12Rapamycin Complex in Mammalian Cells (∗). J. Biol. Chem. 270, 815–822.

10.1074/jbc.270.2.815.

10. Noda, T., and Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue,

controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966. 10.1074/jbc.273.7.3963.

11. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Rüegg, M.A., Hall, A., and Hall,

M.N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is

rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128. 10.1038/ncb1183.

12. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D.,

Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR Complexes, Only One of

which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Mol.

Cell 10, 457–468. 10.1016/S1097-2765(02)00636-6.

13. Sarbassov, Ali, S.M., Kim, D.-H., Guertin, D.A., Latek, R.R., Erdjument-Bromage,

H., Tempst, P., and Sabatini, D.M. (2004). Rictor, a Novel Binding Partner of

71

mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that

Regulates the Cytoskeleton. Curr. Biol. 14, 1296–1302. 10.1016/j.cub.2004.06.054.

14. Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C.,

Avruch, J., and Yonezawa, K. (2002). Raptor, a Binding Partner of Target of

Rapamycin (TOR), Mediates TOR Action. Cell 110, 177–189. 10.1016/S00928674(02)00833-4.

15. Kim, D.-H., Sarbassov, D.D., Ali, S.M., Latek, R.R., Guntur, K.V.P., ErdjumentBromage, H., Tempst, P., and Sabatini, D.M. (2003). GβL, a Positive Regulator of

the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction

between Raptor and mTOR. Mol. Cell 11, 895–904. 10.1016/S1097-2765(03)00114X.

16. Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., ErdjumentBromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR Interacts with Raptor to

Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell

110, 163–175. 10.1016/S0092-8674(02)00808-5.

17. Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M.,

Gray, N.S., and Sabatini, D.M. (2009). DEPTOR Is an mTOR Inhibitor Frequently

Overexpressed in Multiple Myeloma Cells and Required for Their Survival. Cell 137,

873–886. 10.1016/j.cell.2009.03.046.

18. Wang, L., Harris, T.E., Roth, R.A., and Lawrence, J.C. (2007). PRAS40 Regulates

mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding.

72

J. Biol. Chem. 282, 20036–20044. 10.1074/jbc.M702376200.

19. Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., and

Sabatini, D.M. (2006). mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its

Isoforms Define Three Distinct mTORC2s. Curr. Biol. 16, 1865–1870.

10.1016/j.cub.2006.08.001.

20. Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S.Y., Huang, Q., Qin,

J., and Su, B. (2006). SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and

Regulates Akt Phosphorylation and Substrate Specificity. Cell 127, 125–137.

10.1016/j.cell.2006.08.033.

21. Woo, S.-Y., Kim, D.-H., Jun, C.-B., Kim, Y.-M., Haar, E.V., Lee, S., Hegg, J.W.,

Bandhakavi, S., Griffin, T.J., and Kim, D.-H. (2007). PRR5, a Novel Component of

mTOR Complex 2, Regulates Platelet-derived Growth Factor Receptor β Expression

and Signaling. J. Biol. Chem. 282, 25604–25612. 10.1074/jbc.M704343200.

22. Yang, Q., Inoki, K., Ikenoue, T., and Guan, K.-L. (2006). Identification of Sin1 as

an essential TORC2 component required for complex formation and kinase activity.

Genes Dev. 20, 2820–2832. 10.1101/gad.1461206.

23. Reinke, A., Anderson, S., McCaffery, J.M., Yates, J., Aronova, S., Chu, S.,

Fairclough, S., Iverson, C., Wedaman, K.P., and Powers, T. (2004). TOR Complex 1

Includes a Novel Component, Tco89p (YPL180w), and Cooperates with Ssd1p to

Maintain Cellular Integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752–

14762. 10.1074/jbc.M313062200.

73

24. Wedaman, K.P., Reinke, A., Anderson, S., Yates, J., McCaffery, J.M., and Powers,

T. (2003). Tor Kinases Are in Distinct Membrane-associated Protein Complexes in

Saccharomyces cerevisiae. Mol. Biol. Cell 14, 1204–1220. 10.1091/mbc.e02-090609.

25. Zinzalla, V., Sturgill, T.W., and Hall, M.N. (2010). Chapter 1 - TOR Complexes:

Composition, Structure, and Phosphorylation. In The Enzymes The Enzymes.

(Academic Press), pp. 1–20. 10.1016/S1874-6047(10)27001-4.

26. Loewith, R., and Hall, M.N. (2011). Target of rapamycin (TOR) in nutrient

signaling and growth control. Genetics 189, 1177–1201.

10.1534/genetics.111.133363.

27. Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O.,

Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al. (2007). Sch9 is a major

target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674.

10.1016/j.molcel.2007.04.020.

28. Noda, T. (2017). Regulation of Autophagy through TORC1 and mTORC1.

Biomolecules 7, 52. 10.3390/biom7030052.

29. Lempiäinen, H., Uotila, A., Urban, J., Dohnal, I., Ammerer, G., Loewith, R., and

Shore, D. (2009). Sfp1 interaction with TORC1 and Mrs6 reveals feedback

regulation on TOR signaling. Mol. Cell 33, 704–716. 10.1016/j.molcel.2009.01.034.

30. Bertram, P.G., Choi, J.H., Carvalho, J., Ai, W., Zeng, C., Chan, T.-F., and Zheng,

X.F.S. (2000). Tripartite Regulation of Gln3p by TOR, Ure2p, and Phosphatases. J.

74

Biol. Chem. 275, 35727–35733. 10.1074/jbc.M004235200.

31. Boeckstaens, M., Llinares, E., Van Vooren, P., and Marini, A.M. (2014). The

TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium

transport protein. Nat. Commun. 5, 3101. 10.1038/ncomms4101.

32. Yerlikaya, S., Meusburger, M., Kumari, R., Huber, A., Anrather, D., Costanzo, M.,

Boone, C., Ammerer, G., Baranov, P.V., and Loewith, R. (2016). TORC1 and

TORC2 work together to regulate ribosomal protein S6 phosphorylation in

Saccharomyces cerevisiae. Mol. Biol. Cell 27, 397–409. 10.1091/mbc.e15-08-0594.

33. Inoki, K., Li, Y., Xu, T., and Guan, K.-L. (2003). Rheb GTPase is a direct target of

TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834.

10.1101/gad.1110003.

34. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.-L. (2002). TSC2 is phosphorylated

and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657.

10.1038/ncb839.

35. Potter, C.J., Huang, H., and Xu, T. (2001). Drosophila Tsc1 Functions with Tsc2 to

Antagonize Insulin Signaling in Regulating Cell Growth, Cell Proliferation, and

Organ Size. Cell 105, 357–368. 10.1016/S0092-8674(01)00333-6.

36. Hao, F., Kondo, K., Itoh, T., Ikari, S., Nada, S., Okada, M., and Noda, T. (2017).

Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the

Golgi-lysosome contact site. J. Cell Sci., jcs.208017. 10.1242/jcs.208017.

37. Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator Is

75

a GEF for the Rag GTPases that Signal Amino Acid Levels to mTORC1. Cell 150,

1196–1208. 10.1016/j.cell.2012.07.032.

38. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M.

(2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and Is

necessary for Its activation by amino acids. Cell 141, 290–303.

10.1016/j.cell.2010.02.024.

39. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P., and Guan, K.-L. (2008).

Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–

945. 10.1038/ncb1753.

40. Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled,

L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid

signaling to mTORC1. Science 320, 1496–1501. 10.1126/science.1157535.

41. Jewell, J.L., Russell, R.C., and Guan, K.-L. (2013). Amino acid signalling upstream

of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133–139. 10.1038/nrm3522.

42. Binda, M., Péli-Gulli, M.-P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W.,

Loewith, R., and De Virgilio, C. (2009). The Vam6 GEF controls TORC1 by

activating the EGO Complex. Mol. Cell 35, 563–573. 10.1016/j.molcel.2009.06.033.

43. Powis, K., Zhang, T., Panchaud, N., Wang, R., Virgilio, C.D., and Ding, J. (2015).

Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag

GTPase-dependent TORC1 signaling. Cell Res. 25, 1043–1059. 10.1038/cr.2015.86.

44. Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A.,

76

Grabiner, B.C., Spear, E.D., Carter, S.L., Meyerson, M., and Sabatini, D.M. (2013).

A Tumor suppressor complex with GAP activity for the Rag GTPases That signal

amino acid sufficiency to mTORC1. Science 340, 1100–1106.

10.1126/science.1232044.

45. Condon, K.J., and Sabatini, D.M. (2019). Nutrient regulation of mTORC1 at a

glance. J. Cell Sci. 132, jcs222570. 10.1242/jcs.222570.

46. Algret, R., Fernandez-Martinez, J., Shi, Y., Kim, S.J., Pellarin, R., Cimermancic,

P., Cochet, E., Sali, A., Chait, B.T., Rout, M.P., et al. (2014). Molecular Architecture

and Function of the SEA Complex, a Modulator of the TORC1 Pathway. Mol. Cell.

Proteomics MCP 13, 2855–2870. 10.1074/mcp.M114.039388.

47. Kira, S., Tabata, K., Shirahama-Noda, K., Nozoe, A., Yoshimori, T., and Noda, T.

(2014). Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2Npr3 inactivates TORC1 and induces autophagy. Autophagy 10, 1565–1578.

10.4161/auto.29397.

48. Panchaud, N., Péli-Gulli, M.-P., and De Virgilio, C. (2013). SEACing the GAP that

nEGOCiates TORC1 activation: Evolutionary conservation of Rag GTPase

regulation. Cell Cycle 12, 2948–2952. 10.4161/cc.26000.

49. Panchaud, N., Péli-Gulli, M.-P., and De Virgilio, C. (2013). Amino acid

deprivation inhibits TORC1 through a GTPase-activating protein complex for the

Rag family GTPase Gtr1. Sci. Signal. 6. 10.1126/scisignal.2004112.

50. Nicastro, R., Sardu, A., Panchaud, N., and De Virgilio, C. (2017). The Architecture

77

of the Rag GTPase Signaling Network. Biomolecules 7, 48. 10.3390/biom7030048.

51. Kim, A., and Cunningham, K.W. (2015). A LAPF/phafin1-like protein regulates

TORC1 and lysosomal membrane permeabilization in response to endoplasmic

reticulum membrane stress. Mol. Biol. Cell 26, 4631–4645. 10.1091/mbc.E15-080581.

52. Michel, A.H., Hatakeyama, R., Kimmig, P., Arter, M., Peter, M., Matos, J., De

Virgilio, C., and Kornmann, B. (2017). Functional mapping of yeast genomes by

saturated transposition. eLife 6, e23570. 10.7554/eLife.23570.

53. Tanigawa, M., and Maeda, T. (2017). An In Vitro TORC1 Kinase Assay That

Recapitulates the Gtr-Independent Glutamine-Responsive TORC1 Activation

Mechanism on Yeast Vacuoles. Mol. Cell. Biol. 37, e00075-17.

10.1128/MCB.00075-17.

54. Ukai, H., Araki, Y., Kira, S., Oikawa, Y., May, A.I., and Noda, T. (2018). Gtr/Egoindependent TORC1 activation is achieved through a glutamine-sensitive interaction

with Pib2 on the vacuolar membrane. PLOS Genet. 14, e1007334.

10.1371/journal.pgen.1007334.

55. Chantranupong, L., Wolfson, R.L., Orozco, J.M., Saxton, R.A., Scaria, S.M., BarPeled, L., Spooner, E., Isasa, M., Gygi, S.P., and Sabatini, D.M. (2014). The Sestrins

Interact with GATOR2 to Negatively Regulate the Amino-Acid-Sensing Pathway

Upstream of mTORC1. Cell Rep. 9, 1–8. 10.1016/j.celrep.2014.09.014.

56. Parmigiani, A., Nourbakhsh, A., Ding, B., Wang, W., Kim, Y.C., Akopiants, K.,

78

Guan, K.-L., Karin, M., and Budanov, A.V. (2014). Sestrins Inhibit mTORC1 Kinase

Activation through the GATOR Complex. Cell Rep. 9, 1281–1291.

10.1016/j.celrep.2014.10.019.

57. Saxton, R.A., Knockenhauer, K.E., Wolfson, R.L., Chantranupong, L., Pacold,

M.E., Wang, T., Schwartz, T.U., and Sabatini, D.M. (2016). Structural basis for

leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53–58.

10.1126/science.aad2087.

58. Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor,

J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1

pathway. Science 351, 43–48. 10.1126/science.aab2674.

59. Chantranupong, L., Scaria, S.M., Saxton, R.A., Gygi, M.P., Shen, K., Wyant, G.A.,

Wang, T., Harper, J.W., Gygi, S.P., and Sabatini, D.M. (2016). The CASTOR

Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 165, 153–164.

10.1016/j.cell.2016.02.035.

60. Saxton, R.A., Chantranupong, L., Knockenhauer, K.E., Schwartz, T.U., and

Sabatini, D.M. (2016). Mechanism of arginine sensing by CASTOR1 upstream of

mTORC1. Nature 536, 229–233. 10.1038/nature19079.

61. Gu, X., Orozco, J.M., Saxton, R.A., Condon, K.J., Liu, G.Y., Krawczyk, P.A.,

Scaria, S.M., Harper, J.W., Gygi, S.P., and Sabatini, D.M. (2017). SAMTOR is an S adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818.

10.1126/science.aao3265.

79

62. Chen, J., Ou, Y., Luo, R., Wang, J., Wang, D., Guan, J., Li, Y., Xia, P., Chen, P.R.,

and Liu, Y. (2021). SAR1B senses leucine levels to regulate mTORC1 signalling.

Nature 596, 281–284. 10.1038/s41586-021-03768-w.

63. Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C., and

De Virgilio, C. (2012). Leucyl-tRNA Synthetase Controls TORC1 via the EGO

Complex. Mol. Cell 46, 105–110. 10.1016/j.molcel.2012.02.009.

64. Sutter, B.M., Wu, X., Laxman, S., and Tu, B.P. (2013). Methionine Inhibits

Autophagy and Promotes Growth by Inducing the SAM-Responsive Methylation of

PP2A. Cell 154, 403–415. 10.1016/j.cell.2013.06.041.

65. Tanigawa, M., Yamamoto, K., Nagatoishi, S., Nagata, K., Noshiro, D., Noda, N.N.,

Tsumoto, K., and Maeda, T. (2021). A glutamine sensor that directly activates

TORC1. Commun. Biol. 4, 1093. 10.1038/s42003-021-02625-w.

66. Chantranupong, L., Wolfson, R.L., and Sabatini, D.M. (2015). Nutrient-sensing

mechanisms across evolution. Cell 161, 67–83. 10.1016/j.cell.2015.02.041.

67. Jin, N., Mao, K., Jin, Y., Tevzadze, G., Kauffman, E.J., Park, S., Bridges, D.,

Loewith, R., Saltiel, A.R., Klionsky, D.J., et al. (2014). Roles for PI(3,5)P 2 in

nutrient sensing through TORC1. Mol. Biol. Cell 25, 1171–1185. 10.1091/mbc.e1401-0021.

68. Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K.,

and Ohsumi, Y. (2010). Tor directly controls the Atg1 Kinase complex to regulate

autophagy. Mol. Cell. Biol. 30, 1049–1058. 10.1128/MCB.01344-09.

80

69. Suzuki, H., Osawa, T., Fujioka, Y., and Noda, N.N. (2017). Structural biology of

the core autophagy machinery. Curr. Opin. Struct. Biol. 43, 10–17.

10.1016/j.sbi.2016.09.010.

70. Suzuki, K., and Ohsumi, Y. (2010). Current knowledge of the pre-autophagosomal

structure (PAS). FEBS Lett 584, 1280–1286. 10.1016/j.febslet.2010.02.001.

71. Fujioka, Y., Alam, J.Md., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A.I.,

Knorr, R.L., Suzuki, K., Ohsumi, Y., et al. (2020). Phase separation organizes the site

of autophagosome formation. Nature 578, 301–305. 10.1038/s41586-020-1977-6.

72. Kira, S., Kumano, Y., Ukai, H., Takeda, E., Matsuura, A., and Noda, T. (2016).

Dynamic relocation of the TORC1–Gtr1/2–Ego1/2/3 complex is regulated by Gtr1

and Gtr2. Mol. Biol. Cell 27, 382–396. 10.1091/mbc.e15-07-0470.

73. Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor,

J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1

pathway. Science 351, 43–48. 10.1126/science.aab2674.

74. Kim, A., and Cunningham, K.W. (2015). A LAPF/phafin1-like protein regulates

TORC1 and lysosomal membrane permeabilization in response to endoplasmic

reticulum membrane stress. Mol. Biol. Cell 26, 4631–4645. 10.1091/mbc.E15-080581.

75. Hatakeyama, R. (2021). Pib2 as an Emerging Master Regulator of Yeast TORC1.

Biomolecules 11, 1489. 10.3390/biom11101489.

76. Mudholkar, K., Fitzke, E., Prinz, C., Mayer, M.P., and Rospert, S. (2017). The

81

Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling

pathway. Nat. Commun. 8, 937. 10.1038/s41467-017-00635-z.

77. Mülleder, M., Capuano, F., Pir, P., Christen, S., Sauer, U., Oliver, S.G., and Ralser,

M. (2012). A prototrophic deletion mutant collection for yeast metabolomics and

systems biology. Nat. Biotechnol. 30, 1176–1178. 10.1038/nbt.2442.

78. Kira, S., Noguchi, M., Araki, Y., Oikawa, Y., Yoshimori, T., Miyahara, A., and

Noda, T. (2021). Vacuolar protein Tag1 and Atg1–Atg13 regulate autophagy

termination during persistent starvation in S. cerevisiae. J. Cell Sci. 134, jcs253682.

10.1242/jcs.253682.

79. Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y., and Nakatogawa, H. (2018).

The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the

endoplasmic reticulum for autophagosome formation. Proc. Natl. Acad. Sci. 115,

10363–10368. 10.1073/pnas.1806727115.

80. Merhi, A., and André, B. (2012). Internal amino acids promote Gap1 permease

ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like

adaptors. Mol. Cell. Biol. 32, 4510–4522. 10.1128/MCB.00463-12.

81. Bianchi, F., Van’T Klooster, J.S., Ruiz, S.J., and Poolman, B. (2019). Regulation of

Amino Acid Transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83,

e00024-19. 10.1128/MMBR.00024-19.

82. Kaur, J., and Bachhawat, A.K. (2007). Yct1p, a novel, high-affinity, cysteinespecific transporter from the yeast Saccharomyces cerevisiae. Genetics 176, 877–

82

890. 10.1534/genetics.107.070342.

83. Düring-Olsen, L., Regenberg, B., Gjermansen, C., Kielland-Brandt, M.C., and

Hansen, J. (1999). Cysteine uptake by Saccharomyces cerevisiae is accomplished by

multiple permeases. Curr. Genet. 35, 609–617. 10.1007/s002940050459.

84. Wu AL, M.-R.W. (1994). GSH1, which encodes gamma-glutamylcysteine

synthetase, is a target gene for yAP-1 transcriptional regulation. Mol. Cell. Biol. 14,

5832–5839. 10.1128/mcb.14.9.5832-5839.1994.

85. Kitamoto, K., Yoshizawa, K., Ohsumi, Y., and Anraku, Y. (1988). Dynamic

aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J.

Bacteriol. 170, 2683–2686. 10.1128/jb.170.6.2683-2686.1988.

86. Kitajima, T., Jigami, Y., and Chiba, Y. (2012). Cytotoxic Mechanism of

Selenomethionine in Yeast. J. Biol. Chem. 287, 10032–10038.

10.1074/jbc.M111.324244.

87. Paul, B.D., Sbodio, J.I., and Snyder, S.H. (2018). Cysteine Metabolism in Neuronal

Redox Homeostasis. Trends Pharmacol. Sci. 39, 513–524.

10.1016/j.tips.2018.02.007.

88. Yin, J., Ren, W., Yang, G., Duan, J., Huang, X., Fang, R., Li, C., Li, T., Yin, Y.,

Hou, Y., et al. (2016). L-Cysteine metabolism and its nutritional implications. Mol.

Nutr. Food Res. 60, 134–146. 10.1002/mnfr.201500031.

89. Thomas, D., and Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in

Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61, 503–532.

83

10.1128/mmbr.61.4.503-532.1997.

90. Varlakhanova, N.V., Mihalevic, M., Bernstein, K.A., and Ford, M.G.J. (2017). Pib2

and EGO Complex are both required for activation of TORC1. J. Cell Sci.,

jcs.207910. 10.1242/jcs.207910.

91. Kawano-Kawada, M., Kakinuma, Y., and Sekito, T. (2018). Transport of Amino

Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological

Role. Biol. Pharm. Bull. 41, 1496–1501. 10.1248/bpb.b18-00165.

92. Stracka, D., Jozefczuk, S., Rudroff, F., Sauer, U., and Hall, M.N. (2014). Nitrogen

source activates TOR (target of rapamycin) complex 1 via glutamine and

independently of Gtr/Rag proteins. J. Biol. Chem. 289, 25010–25020.

10.1074/jbc.M114.574335.

93. Dokládal, L., Stumpe, M., Hu, Z., Jaquenoud, M., Dengjel, J., and De Virgilio, C.

(2021). Phosphoproteomic responses of TORC1 target kinases reveal discrete and

convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep.

37, 110149. 10.1016/j.celrep.2021.110149.

94. Albers, E., Laizé, V., Blomberg, A., Hohmann, S., and Gustafsson, L. (2003).

Ser3p (Yer081wp) and Ser33p (Yil074cp) Are Phosphoglycerate Dehydrogenases in

Saccharomyces cerevisiae. J. Biol. Chem. 278, 10264–10272.

10.1074/jbc.M211692200.

95. Napolitano, G., Di Malta, C., Esposito, A., De Araujo, M.E.G., Pece, S., Bertalot,

G., Matarese, M., Benedetti, V., Zampelli, A., Stasyk, T., et al. (2020). A substrate-

84

specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome. Nature 585, 597–

602. 10.1038/s41586-020-2444-0.

96. Morozumi, Y., Hishinuma, A., Furusawa, S., Sofyantoro, F., Tatebe, H., and

Shiozaki, K. (2021). Fission yeast TOR complex 1 phosphorylates Psk1 through an

evolutionarily conserved interaction mediated by the TOS motif. J. Cell Sci. 134,

jcs258865. 10.1242/jcs.258865.

97. Fan, S.-J., Snell, C., Turley, H., Li, J.-L., McCormick, R., Perera, S.M.W.,

Heublein, S., Kazi, S., Azad, A., Wilson, C., et al. (2016). PAT4 levels control

amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect

clinical outcome in colorectal cancer. Oncogene 35, 3004–3015.

10.1038/onc.2015.363.

98. Hatakeyama, R., Péli-Gulli, M.-P., Hu, Z., Jaquenoud, M., Garcia Osuna, G.M.,

Sardu, A., Dengjel, J., and De Virgilio, C. (2019). Spatially Distinct Pools of TORC1

Balance Protein Homeostasis. Mol. Cell 73, 325-338.e8.

10.1016/j.molcel.2018.10.040.

99. Meng, D., Yang, Q., Wang, H., Melick, C.H., Navlani, R., Frank, A.R., and Jewell,

J.L. (2020). Glutamine and asparagine activate mTORC1 independently of Rag

GTPases. J. Biol. Chem. 295, 2890–2899. 10.1074/jbc.AC119.011578.

100.

Baker Brachmann, C., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and

Boeke, J.D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae

S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and

85

other applications. Yeast 14, 115–132. 10.1002/(SICI)10970061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.

101.

Sikorski, R.S., and Hieter, P. (1989). A System of Shuttle Vectors and Yeast

Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces

ceratisiae. Genetics 122, 19–27. 10.1093/genetics/122.1.19.

102.

Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., and Barton, G.J.

(2009). Jalview Version 2—a multiple sequence alignment editor and analysis

workbench. Bioinformatics 25, 1189–1191. 10.1093/bioinformatics/btp033.

103.

Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H.,

Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A

versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins,

more markers and promoter substitution cassettes. Yeast 21, 947–962.

10.1002/yea.1142.

104.

Storici, F., and Resnick, M.A. (2006). The Delitto Perfetto Approach to In

Vivo Site‐Directed Mutagenesis and Chromosome Rearrangements with Synthetic

Oligonucleotides in Yeast. In Methods in Enzymology (Elsevier), pp. 329–345.

10.1016/S0076-6879(05)09019-1.

105.

Cools, M., Rompf, M., Mayer, A., and André, B. (2019). Measuring the

Activity of Plasma Membrane and Vacuolar Transporters in Yeast. In Yeast Systems

Biology Methods in Molecular Biology., S. G. Oliver and J. I. Castrillo, eds.

(Springer New York), pp. 247–261. 10.1007/978-1-4939-9736-7_15.

86

106.

Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., and

Mann, M. (2005). Exponentially Modified Protein Abundance Index (emPAI) for

Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced

Peptides per Protein. Mol. Cell. Proteomics 4, 1265–1272. 10.1074/mcp.M500061MCP200.

87

Acknowledgements

First, I would like to express my deepest gratitude to my supervisor, Prof.

Takeshi Noda, for his continuous support, insightful guidance, and constructive

feedback, throughout my research journey. I would like to express my deep gratitude to

assistant professor Dr. Araki for his invaluable guidance and insightful discussion in

this study. I am thankful to all members of Noda-Lab for valuable discussion.

I would like to thank for Prof. Takayuki Sekito and Prof. Nobuo Noda for their

scientific discussions.

My heartfelt thanks go to my parents, for their unwavering love, support, and

encouragement throughout my academic journey. I am immensely grateful to my

spouse for her endless support, patience, and belief, and for always standing by my side,

providing unwavering support in both the good times and the challenging moments.

Finally, I want to express my gratitude to everyone who took the time to read

this thesis and provide me with valuable suggestions that will help me in my future

studies.

88

Achievements

Publications

First author publication:

[1].Qingzhong Zeng, Yasuhiro Araki, Takeshi Noda. Pib2 is a cysteine sensor

involved in TORC1 activation. 投稿中.

[2]. Qingzhong Zeng, Yasuhiro Araki, Takeshi Noda. TORC1 represses SER3

expression by inducing lncRNA SRG1 transcriptional interference. 投稿準備中

[3]. Zhang, H.-T., Zeng, Q., Wu, B., Lu, J., Tong, K.-L., Lin, J., Liu, Q.-Y., Xu, L.,

Yang, J., Liu, X., et al. (2021). TRIM21-regulated Annexin A2 plasma membrane

trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated

autophagy. Cell Death Dis. 12, 21. 10.1038/s41419-020-03364-2. (Co-first author)

[4]. Zeng, Q., Liu, W.T., Lu, J.L., Liu, X.H., Zhang, Y.F., Liu, L.X., and Gao, X.J.

(2018). YWHAZ Binds to TRIM21 but Is Not Involved in TRIM21-stimulated

Osteosarcoma Cell Proliferation. Biomed. Environ. Sci. BES 31, 186–196.

10.3967/bes2018.024.

Co-author publication:

89

[1]. Xu, G.-S., Lin, Y.-N., Zeng, Q., Li, Z.-P., Xiao, T., Ye, Y.-S., Li, Z.-Y., and Gao,

X. HSP90-regulated CHIP/TRIM21/p21 Axis Involves in the Senescence of

Osteosarcoma Cells. Protein Pept. Lett. 30, 1–7.

[2]. Si, H.W., Mei, X.F., Zeng, Q., Hui, L.X., Juan, G.X., and Xia, L.L. (2017).

ERK1/2-mediated Cytoplasmic Accumulation of hnRNPK Antagonizes TRAILinduced Apoptosis through Upregulation of XIAP in H1299 Cells. Biomed. Environ.

Sci. 30, 473–481. 10.3967/bes2017.063.

[3]. Gao, X., Xu, F., Zhang, H.-T., Chen, M., Huang, W., Zhang, Q., Zeng, Q., and Liu,

L. (2016). PKCα–GSK3β–NF-κB signaling pathway and the possible involvement of

TRIM21 in TRAIL-induced apoptosis. Biochem. Cell Biol. 94, 256–264. 10.1139/bcb2016-0009.

[4]. Huang CQ, Li W, Wu B, Chen WM, Chen LH, Mo GW, Zhang QF, Gong L, Li J,

Zhang HC, Zhu HM, Zeng Q. (2016). Pheretima aspergillum decoction suppresses

inflammation and relieves asthma in a mouse model of bronchial asthma by NF-κB

inhibition. J. Ethnopharmacol. 189, 22–30. 10.1016/j.jep.2016.05.028.

Conference Presentation

Qingzhong Zeng、荒木保弘、野田健司. 二つの TORC1 活性化経路の上流に位置

するアミノ酸の同定. 第 11 回 TOR 研究会. (2021/7/15-16)

90

Qingzhong Zeng、荒木保弘、野田健司. オートファジーを抑制する TORC1 の活

性化経路の上流に位置するアミノ酸の同定. 「マルチモードオートファジー」

第 3 回班会議・第 14 回オートファジー研究会. (2021/10/24-27)

Qingzhong Zeng, Yasuhiro Araki, Takeshi Noda. TORC1 senses amino acids through

distinct upstream pathways to inhibit autophagy. The 10th International Symposium on

Autophagy. (2022/10/23-27)

Qingzhong Zeng, Yasuhiro Araki, Takeshi Noda. Cysteine-activated TORC1 is

dependent on the Pib2 pathway in Saccharomyces cerevisiae. 第 12 回 TOR 研究会.

(2022/10/29-30)

Qingzhong Zeng, Yasuhiro Araki, Takeshi Noda. Cysteine-activated TORC1 is

dependent on the Pib2 pathway. The 45th Annual Meeting of the Molecular Biology

Society of Japan. (2022/11/30-12/2)

91

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る