リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the Use of Carbonization to Improve Chicken Manure as Organic Nitrogen Fertilizer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the Use of Carbonization to Improve Chicken Manure as Organic Nitrogen Fertilizer

Moses Ahmed Daramy 岐阜大学

2020.09.18

概要

持続可能な食糧生産には、ミネラルと有機態の肥料成分の強化が必要である。しかし、鶏糞などの有機質肥料の利用は、臭気や取り扱いにくさなどの欠点のため、依然として小規模のままである。鶏糞の炭化は、鶏糞を農業に利用しやすい形に変換する可能性があるが、炭化過程の中での化学組成の変化と窒素供給能力への影響は良くわかっていない。そこで本博士論文は、炭化を利用して鶏糞を有機窒素肥料の供給源として持続的に変換および改善する方法を明らかにした。本研究の主要な課題は、以下の通りである。

・鶏糞の化学組成、表面特性、および窒素構造が、炭化することによってどのように変化し、土壌中での窒素の生物的利用につながるのか?
この点に関しては、炭化処理による鶏糞の温度上昇は、肥料成分の化学的組成の変化をもたらすことを示した。炭化鶏糞中の有機態窒素成分の化学組成の変化は、土壌中の窒素成分の生物的利用の可能性に影響を与えた。特に、鶏糞からの窒素成分の生物的利用の可能性は、350℃で処理されたときに改善した。これは、この温度で中程度の難分解性が生じたためであることがわかった。

・鶏糞の優れた窒素供給能力を維持するのに適した炭化の温度条件とは?
この点に関しては、鶏糞を 350℃〜375℃で炭化した場合、その過程で生じる化学組成の変化は小さいことがわかった。したがって、これらの温度で炭化された鶏糞の窒素供給能力は、未処理の鶏糞と同程度であった。しかし 400℃以上の炭化では、化学組成に大きな変化が見られ、肥料としての窒素供給能力が大幅に減少したことがわかった。

・炭化処理時の鶏糞の量と時間は、炭化鶏糞の窒素の生物的利用の可能性にどのように影響するか?
この点に関しては、350℃で同じ処理時間である場合、処理した鶏糞の量が、その化学組成に大きく影響することがわかった。化学特性、表面機能性、複素環式窒素構造の蓄積と窒素の利用可能性の低下は、同じ温度と処理時間では、大きな試料(180 g)の時よりも少ない試料(60 g)の時に、顕著であった。これは少量の場合、鶏糞への温度処理時間が相対的に長くなるため、連続的な脱水、縮合、結合開裂、および表面官能基の損失が起きるためと考えられた。

この論文で使われている画像

参考文献

1. Abbasi, M.K., Hina, M., Khalique, A., and Khan, S.R. 2007. Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Commun. Soil Sci. Plant Anal. 38, 1691–1711.

2. Ahmed, M.B., Zhou, J.L., Ngo, H.H., and Guo, W. 2016. Insight into biochar properties and its cost analysis. Biomass Bioenerg. 84, 76–86.

3. Almendros, G., Knicker, H., and Gonza´ lez-Vila, F.J. 2003. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org. Geochem. 34, 1559–1568.

4. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., and Usman, A.R.A. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374-379.

5. Amanullah, M.M., Sekar, S., and Muthukrishnan, P. Prospects and Potential of Poultry Manure. 2010. Asian J. Plant Sci. 9, 172-182.

6. Azeez, J., and Van Averbeke, W. 2010. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresource technol. 101, 5645-5651.

7. Baldock, J.A., and Smernik, R.J. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33, 1093–1109.

8. Bavariani, M.Z., Ronaghi, A., and Ghasemi, R. 2019. Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Commun. Soil Sci. Plant anal. 50, 402-411.

9. Bernier, M.H., Levy, G.J., Fine, P., and Borisover, M. 2013. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma. 209–210, 233–240.

10. Bremner, J.M. 1965. Inorganic forms of nitrogen. In: Black, C.A., [Ed.], methods of soil analysis, pp. 1179-1237. American society of agronomy, inc publisher, Madison, USA.

11. Brownsort, P.A. 2009. Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. Master of Science thesis, University of Edinburgh, Edinburgh, UK Biochar Research Centre - SCCS Consortium.

12. Bruun, S., Harmer, S.L., Bekiaris, G., Christel, W., Zuin, L., Hu, Y., Jensen, L.S., and Lombi, E. 2017. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere. 169, 377-386.

13. Calderon F.J., MeCarty, G.W., and Reeves, J.B. 2005. Analysis of manure and nitrogen mineralization during incubation. Biol. Fertil. Soils. 41, 328–336.

14. Cantrell, K., Ro, K., Mahajan, D., Anjom, M., and Hunt, P.G. 2007. Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities. Ind. Eng. Chem. Res. 46, 8918-8927.

15. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., and Ro, K.S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428.

16. Cao, W., Cao, C., Guo, L., Jin, H., Dargusch, M., Bernhardt, D., and Yao, X. 2016. Hydrogen production from supercritical water gasification of chicken manure. Int. J. Hydrogen Energy. 41, 22722–22731.

17. Cataldo, D. A., Haroon, M., Schrader, L.E., and Youngs, V.L. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6, 71–80.

18. Cayci, G., Temiz, C., and Ok, S.S. 2017. The Effects of Fresh and Composted Chicken Manures on Some Soil Characteristics. Commun. soil sci. plant anal. 48, 1528-1538.

19. Cely, P., Gasco, G., Paz-Ferreiro, J., and Mendez, A. 2015. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrol. 111, 173-182.

20. Chan, K.Y., Zwieten, L.V., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 46, 437-444.

21. Chantigny, M.H., Rochette, P., and Angers, D.A. 2001. Short-term C and N dynamics in a soil amended with pig slurry and barley straw: A field experiment. Can. J. Soil Sci. 81, 131–137.

22. Chen, B., Johnson, E.J., Chefetz, B., Zhu, L., and Xing, B. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility. Environ Technol. 39, 6138–46.

23. Chen, B., Wang, Y., and Hu, D. 2010. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white rot fungi. J. Hazard Mater. 179, 845–51.

24. Chen, B., Zhou, D., and Zhu, L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143.

25. Chen, Z. and Jiang, X. 2014. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture, 4, 1-29.

26. Chescheir, G.M., Westerman, P.W., and Safley, L.M. 1986. Laboratory methods for estimating available nitrogen in manures and sludges. Agricultural wastes. 18, 175-195.

27. Christel, W., Bruun, S., Magid, J., and Jensen, L.S. 2014. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresour. Technol. 169, 543–551.

28. Christensen, N.L., 1973. Fire and the nitrogen cycle in California chaparral. Science. 181, 66-67.

29. Cimo, G., Kucerik, J., Berns, A.E., Schaumann, G.E., Alonzo, G., and Conte, P. 2014. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. J. Agric. Food Chem. 62, 1912−1918.

30. Clough, T., Condron, L., Kammann, C., and Müller, C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy. 3, 275-293.

31. Covington, W.W., and Sackett, S.S. 1992. “Soil Mineral Nitrogen Changes Following Prescribed Burning in Ponderosa Pine,” For. Ecol. Manage. 54, 175– 191.

32. Daramy, M.A., Kawada, R., and Oba, S. 2020. What is the threshold carbonization temperature for sustainable preservation of the good nitrogen supply ability of chicken manure? Sustainability. 12, 3306.

33. De la Rosa, J.M., and Knicker, H. 2011. Bioavailability of N released from N- rich pyrogenic organic matter: an incubation study, Soil Biol. Biochem. 43, 2368–2373.

34. De la Rosa, J.M., Paneque, M., Miller, A.Z., and Knicker H. 2014. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 499, 175–184.

35. DeBano, L.F., Rice, R.M., and Conrad, C.E. 1979a. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. US Dep. Agric. For. Serv., Pacific Southwest For. Range Exp. Stn., Berkeley, CA, Res. Pap. PSW-145, 21 pp.

36. Dede, O.H. and Ozer, H. 2018. Enrichment of poultry manure with biomass ash to produce organomineral fertiliser. Environ. Eng. Res. 23, 449-455.

37. Downie, A., Crosky, A., and Munroe, P. 2009. Physical properties of biochar. In: Lehmann, J., Joseph, S. [eds.], Biochar for Environmental Management: Science and Technology, pp. 13–32. Earthscan, London.

38. Dunn, P.H., DeBano, L.H. and Eberlein, G.E., 1979. Effects of burning on chaparral soils. II. Soil microbes and nitrogen mineralization. Soil Sci. Soc. Am. J. 43, 509-514.

39. Fan, Z.J., Ai, Y.W., Li, J.M., and Li, G.W. 2000. Discussion of controlling N loss from volatilization in animal manure. J Sichuan Normal Univ. 23, 548–550

40. FAO. (2010). Agribusiness Handbook: Poultry Meat and Eggs, 1st ed., FAO Investment Centre Division: Rome, Italy, p. 75.

41. Funke, A., and Ziegle, F. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Bior. 4, 160-177.

42. Gay, S.W., Schmidt, D.R., Clanton, C.J., Janni, K.A., Jacobson, L.D., and Weisberg, S. 2003. Odor, total reduced sulfur and ammonia emissions from animal housing facilities and manure storage units in Minnesota. Appl. Eng. Agric. 19, 347–360.

43. Gleixner, G., Czimczik, C.J., Kramer, C., Luhker, B., and Schmidt, M.W.I. 2001. Plant Compounds and their turnover and stability as soil organic matter. Global Biogeochemical Cycles in the Climate System. 201–215.

44. Government of Nunavut, Department of Environment. 2012. Environmental Guideline for the burning and incineration of solid waste. http://env.gov.nu.ca/programareas/environmentprotection

45. Graff, R.A., and Brandes, S.D. 1987. Modification of coal by subcritical steam: pyrolysis and extraction yields. Energy Fuels. 1, 84–88.

46. Hadroug, S., Jellali, S., Leahy, J.J., Kwapinska, M., Jeguirim, M., Hamdi, H., and Kwapinski, W. 2019. Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water. 11, 2271.

47. Hansson, K., Amand, L., Habermann, A., and Winter, F. 2003. Pyrolysis of poly-L-leucine under combustion-like conditions. Fuel. 82, 653–660.

48. Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., KoÈ gel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., and Rullkotter, J. 2000. The molecularly-uncharacterized component of non-living organic matter in natural environments. Org. Geochem. 31, 945–958.

49. Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., and Nelson, P.F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92, 223-28.

50. Isa, A., Hagura, Y., and Suzuki, K. 2008. Size effect of biomass on carbonization rate treated in superheated steam combined with far infrared heating. Shokuhin Kogaku Kaishi. 9, 91-98.

51. Ishimori, T., Takahashi, Y., Sato, H., Hassan, A., Iwamoto, Y., Pandian, G.N., and Hori, H. 2017. Low temperature carbonization of chicken manure to char and its effect on growth of Oryza sativa L. Koshihikari and Brassica rapa komatsuna. Euro-Mediterr J Environ Integr. 2, 10.

52. Jacobson, I.A., Heady, H.H., and Dinneen, G.U. 1958. Thermal reactions of organic nitrogen compounds. I. 1-Methylpyrrole. J. phys. Chem. 62, 1563-1565.

53. Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M.H., Wang, M., and Shan, S. 2016. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 320, 417–426.

54. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., and Sonoki, T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences. 11, 6613–6621.

55. Kelemen, S.R., Gorbaty, M.L., and Kwiatek, P.J. 1988. Nitrogen transformations in Coal during Pyrolysis. Energy Fuels. 12, 159-173.

56. Knicker, H. 2010. “Black nitrogen”- an important fraction in determining the recalcitrance of charcoal. Org. Geochem. 41, 947–950.

57. Koutcheiko, S., Monreal, C.M., Kodama, H., McCracken, T., and Kotlyar, L. 2007. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource technol. 98, 2459- 2464.

58. Laine, J., Simoni, S., and Calles, R. 1991. Preparation of activated carbon from coconut shell in a small scale concurrent flow rotary kiln. Chem. Eng. Commun. 99:15–23.

59. LI, L., and LI, S. 2014. Nitrogen Mineralization from Animal Manures and Its Relation to Organic N Fractions. J. Integr. Agri. 13, 2040-2048.

60. Libra, J., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fühner, C., Bens, O., Kern, J., and Emmerich, K. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2, 71-106.

61. Liu, T., Guo, Y., Peng, N., Lang, Q., Xia, Y., Gai, C., and Liu, Z. 2017. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar. J. Anal. Appl. Pyrolysis. 126, 298–306.

62. Logah, V., Safo, E.Y., and Quansah, C. 2011. Evaluation of Nitrogen Mineralization Dynamics Following Amendments Application under Cropping Systems on a Ferric Acrisol in Ghana. Int. J. Environ. Sci. Dev. 2, 133-137.

63. Lu, Z.L., Li, J.Y., Jiang, J., Xu, R.K. 2012. Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk. Huanjing Kexue. 33, 3585-3591.

64. Marsh, H. and Rodriguez-Reinoso, F. 2006. Production and Reference Material. In: Activated Carbon, Elsevier, 454-508. Oxford, UK: Elsevier.

65. Masarirambi, M.T., Dlamini, P., Wahome, P.K., and Oseni, T.O. 2012. Effects of Chicken Manure on Growth, Yield and Quality of Lettuce (Lactuca sativa L.) ‘Taina’ Under a Lath House in a Semi-Arid Sub-Tropical Environment. American-Eurasian J. Agric. and Environ. Sci. 12, 399-406.

66. Mkhabela, T.S. and Materechera, S.A. (2003). Factors influencing the utilization of cattle and chicken manure for soil fertility management by emergent farmers in the moist Midlands of KwaZulu-Natal Province, South Africa. Nutr. Cycl. Agroecosyst. 65, 151–162.

67. Mroz, G.D., Jurgensen, M.F., Harvey, A.E. and Larsen, M.J. 1980. Effects of fire on nitrogen in forest floor horizons. Soil Sci. Soc. Am. J. 44, 395-400.

68. Mubarak, A.R., Gali, E.A.M., Mohamed, A.G., Steffens, D., and Awadelkarim, A.H. 2010. Nitrogen Mineralization from Five Manures as Influenced by Chemical Composition and Soil Type. Commun. Soil Sci. Plant anal. 41, 1903- 1920.

69. Mushtaq, M., Iqbal, M.K., Khalid, A., and Khan, R.A. 2018. Humification of poultry waste and rice husk using additives and its application. Int. J. Recycl. Org. Waste Agricult. 8, 15–22.

70. National Research Council. 2000. Waste Incineration and Public Health. Washington, DC: The National Academies Press. https://doi.org/10.17226/5803.

71. NIST X-ray Photoelectron Spectroscopy Database 20, version 4.1. Available online: http://dx.doi.org/10.18434/T4T88K (accessed 7 January 2020).

72. Novak, J.M., Lima, I., Baoshan, X., Gaskin, J.W., Steiner, C., Das, K.C., Watts, D.W., Busscher, W.J., and Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195–206.

73. Paneque, M., De la Rosa, J.M., Kern, J., Reza, M.T., and Knicker, H. 2017. Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? J. Anal. Appl. Pyrolysis. 128, 314–323.

74. Paneque, M., Knicker, H., Kern, J., and De la Rosa, J.M. 2019. Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth. Agronomy. 9, 363.

75. Pascual, J. A., Garcia, C., and Hernendez, T. 1999. Comparison of fresh and composted organic waste in their efficacy for the improvement of arid soil quality. Bioresour. Technol. 68, 255-264.

76. Popov, V., Itoh, H., Brebbia, C.A., and Kungoles, A. 2004. Waste management and the environment, 2nd ed., WITpress: Ashurst Lodge Southampton, UK, pp. 696.

77. Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., and Ahmedn, M. 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis. 108, 301–309.

78. Risse, L.M., Cabrera, M.L., Franzluebbers, A.J., Gaskin, J.W., Gilley, J.E., John, E., Killorn, R., Radcliffe, D.E., Tollner, W.E., and Zhang, H. (2006). Land application of manure for beneficial reuse. In: Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers, American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, Available online: https://digitalcommons.unl.edu/biosysengfacpub (accessed on 18 October 2019).

79. Shinogi, Y., Yoshida, H., Koizumi, T., Yamaoka, M., and Saito, T. 2003. Basic characteristics of low temperature carbon products from waste sludge. Adv. Environ Res. 7, 661–665.

80. Sikder, S., and Joardar, J. C. 2019. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agricult. 8, 47–58.

81. Singh, B., Singh, B.P., and Cowie, A.L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 48, 516– 525.

82. Smidt, E., and Parravicini, V. 2009. Effect of sewage sludge treatment and additional aerobic post-stabilization revealed by infrared spectroscopy and multivariate data analysis. Bioresour. Technol. 100, 1775–1780.

83. Song, W., and Guo, M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 94, 138- 145.

84. Steiner, C., Harris, K., Gaskin, J., and Das, K.C. 2018. The nitrogen contained in carbonized poultry litter is not plant available. Open Agriculture. 3, 284–290.

85. Stevenson, F.J., and Cole, M.A. 1999. Cycle of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed., pp. 198-204. John Wilcy and sons, Inc.: New York, USA.

86. Sun, J.N., He, F.H., Pan, Y.H., and Zhang, Z.H. 2016. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B. 67, 12–22.

87. Sun, K., Qiu, M., Han, L., Jin, J., Wang, Z., Pan, Z., and Xing, B. 2018. Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions. Sci. Total Environ. 634, 1300– 1307.

88. Tagoe, S.O., Horiuchi, T., and Matsui, T. 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil. 306, 211-220.

89. Tagoe, S.O., Horiuchi, T., and Matsui, T. Effects of carbonized chicken manure on the growth, nodulation, yield, nitrogen and phosphorus contents of four grain legumes. J. Plant Nutr. 2010, 33, 684-700.

90. Touray, N., Tsai, W.T., Li, M.H. 2014. Effect of holding time during pyrolysis on thermochemical and physical properties of biochars derived from goat manure. Waste Biomass Valori. 5, 1029–1033.

91. Van Kessel, J.S., Reeves, J.B., and Meisinger, J.J. 2000. Nitrogen and carbon mineralization of potential manure components. J. Environ. Qual. 29, 1669– 1677.

92. Van Krevelen, D.W. 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel. 29, 269–284.

93. Wang, Y., Lin, Y., Chiu, P.C., Imhoff, P.T., and Guo, M. 2015. Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ. 512-513, 454–463.

94. Wang, Z., Li, Q., Lin, Z., Whiddon, R., Qiu, K., Kuang, M., and Cen, K. 2016. Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals. Fuel. 164, 254-261.

95. Wei, L., Wen, L., Yang, T., and Zhang, N. 2015. Nitrogen Transformation during Sewage Sludge pyrolysis. Energ. Fuel. 29, 5088-5094.

96. Wiedemann, S.G., McGahan, E.J., and Burger, M. 2008. Layer Hen Manure Analysis Report. Australian Egg Corporation Limited. Available online: https://www.australianeggs.org.au/what-we-do/leading-research/layer-hen- manure-analysis-report/ (accessed on 13 May 2020).

97. Wilkinson, K.G., Harapas, D., Tee, E., Tomkins, R.B., and Premier, R. (2003) Strategies for the Safe Use of Poultry Litter in Food Crop Production. Final report to Horticulture Australia Ltd, Sidney. Project number VG01049, State of Victoria, Department of Primary Industries.

98. Wojtowicz, M.A., Pels, J.R., and Moulijn, J.A. 1995. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel, 74, 507-516.

99. Xiao, R., Wang, J.J., Gaston, L.A., Zhou, B., Park, J.H., Li, R., Dodla, S.K., and Zhang, Z. 2018. Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Manag. 78, 802–810.

100. Yuan, H., Lu, T., Wang, Y.Z., Huang, H.Y., Chen, Y. 2014. Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (Radix isatidis) residue and its effect on soil CO2 emission. J. Anal. Appl. Pyrol. 110, 277–284.

101. Zhan, H., Zhuang, X., Song, Y., Huang, Y., Liu, H., Yin, X., and Wu, C. 2018. Evolution of nitrogen functionalities in relation to NOx precursors during low-temperature pyrolysis of biowastes. Fuel. 218, 325–334.

102. Zhang, J., Tian, Y., Cui, Y., Zuo, W., and Tan, T. 2013. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study. Bioresour. Technol. 132, 57–63

103. Zhang, Y., Zhang, J., Sheng, C., Chen, J., Liu, Y., Zhao, L., and Xie, F. 2011. X-ray Photoelectron Spectroscopy (XPS) Investigation of Nitrogen Functionalities during Coal Char Combustion in O2/CO2 and O2/Ar Atmospheres. Energy Fuels. 25, 240–245.

104. Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., and Xing, B. 2013. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 130, 463–471.

105. Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Munoz, M.A., and Faz, A. 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere. 144, 122-130.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る