リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Correspondence of topological classification between quantum graph extra dimension and topological matter」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Correspondence of topological classification between quantum graph extra dimension and topological matter

Inoue, Tomonori Sakamoto, Makoto Sato, Masatoshi Ueba, Inori 神戸大学

2022.10.15

概要

In this paper, we study five-dimensional Dirac fermions of which the extra-dimension is compactified on quantum graphs. We find that there is a nontrivial correspondence between matrices specifying boundary conditions at the vertex of the quantum graphs and zero-dimensional Hamiltonians in gapped free-fermion systems. Based on the correspondence, we provide a complete topological classification of the boundary conditions in terms of noninteracting fermionic topological phases. The ten symmetry classes of topological phases are fully identified in the language of five-dimensional Dirac fermions, and topological numbers of the boundary conditions are given. In analogy with the bulk-boundary correspondence in noninteracting fermionic topological phases, the boundary condition topological numbers predict four-dimensional massless fermions localized at the vertex of the quantum graphs and thus govern the low energy physics in four dimensions.

参考文献

[1] P. Kuchment, Quantum graphs: I. Some basic structures, Waves Random Media 14, S107 (2004).

[2] P. Kuchment, Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A 38, 4887 (2005).

[3] V. Kostrykin and R. Schrader, Kirchoff’s rule for quantum wires, J. Phys. A 32, 595 (1999).

[4] C. Texier and G. Montambaux, Scattering theory on graphs, J. Phys. A 34, 10307 (2001).

[5] J. Boman and P. Kurasov, Symmetries of quantum graphs and the inverse scattering problem, Adv. Appl. Math. 35, 58 (2005).

[6] Y. Fujimoto, K. Konno, T. Nagasawa, and R. Takahashi, Quantum reflection and transmission in ring systems with double Y-junctions: Occurrence of perfect reflection, J. Phys. A 53, 155302 (2020).

[7] T. Kottos and U. Smilansky, Quantum Chaos on Graphs, Phys. Rev. Lett. 79, 4794 (1997).

[8] P. Hejčík and T. Cheon, Irregular dynamics in a solvable one-dimensional quantum graph, Phys. Lett. A 356, 290 (2006).

[9] ík and T. Cheon, Irregular dynamics in a solvable one-dimensional quantum graph, Phys. Lett. A 356, 290 (2006).

[10] S. Gnutzmann, J. Keating, and F. Piotet, Eigenfunction statistics on quantum graphs, Ann. Phys. (Amsterdam) 325, 2595 (2010).

[11] J. M. Harrison, J. P. Keating, J. M. Robbins, and A. Sawicki, n-particle quantum statistics on graphs, Commun. Math. Phys. 330, 1293 (2014).

[12] T. Maciążek and A. Sawicki, Homology groups for particles on one-connected graphs, J. Math. Phys. (N.Y.) 58, 062103 (2017).

[13] T. Maciążek and A. Sawicki, Non-Abelian quantum sta- tistics on graphs, Commun. Math. Phys. 371, 921 (2019).

[14] T. Nagasawa, M. Sakamoto, and K. Takenaga, Supersym- metry and discrete transformations on S1 with point singu- larities, Phys. Lett. B 583, 357 (2004).

[15] T. Nagasawa, M. Sakamoto, and K. Takenaga, Extended supersymmetry and its reduction on a circle with point singularities, J. Phys. A 38, 8053 (2005).

[16] S. Ohya, Parasupersymmetry in Quantum Graphs, Ann. Phys. (Amsterdam) 331, 299 (2013).

[17] S. Ohya, Non-Abelian monopole in the parameter space of point-like interactions, Ann. Phys. (Amsterdam) 351, 900 (2014).

[18] S. Ohya, BPS monopole in the space of boundary con- ditions, J. Phys. A 48, 505401 (2015).

[19] S. Ohya, Models for the BPS Berry connection, Mod. Phys. Lett. A 36, 2150007 (2021).

[20] T. Inoue, M. Sakamoto, and I. Ueba, Instantons and Berry’s connections on quantum graph, J. Phys. A 54, 355301 (2021).

[21] H. D. Kim, Hiding an extra dimension, J. High Energy Phys. 01 (2006) 090.

[22] G. Cacciapaglia, C. Csaki, C. Grojean, and J. Terning, Field theory on multi-throat backgrounds, Phys. Rev. D 74, 045019 (2006).

[23] A. Bechinger and G. Seidl, Resonant Dirac leptogenesis on throats, Phys. Rev. D 81, 065015 (2010).

[24] S. Abel and J. Barnard, Strong coupling, discrete symmetry and flavour, J. High Energy Phys. 08 (2010) 039.

[25] S. S. C. Law and K. L. McDonald, Broken symmetry as a stabilizing remnant, Phys. Rev. D 82, 104032 (2010).

[26] Y. Fujimoto, T. Nagasawa, K. Nishiwaki, and M. Sakamoto, Quark mass hierarchy and mixing via geometry of extra dimension with point interactions, Prog. Theor. Exp. Phys. 2013, 023B07 (2013).

[27] Y. Fujimoto, K. Nishiwaki, and M. Sakamoto, CP phase from twisted Higgs vacuum expectation value in extra dimension, Phys. Rev. D 88, 115007 (2013).

[28] Y. Fujimoto, K. Nishiwaki, M. Sakamoto, and R. Takahashi, Realization of lepton masses and mixing angles from point interactions in an extra dimension, J. High Energy Phys. 10 (2014) 191.

[29] Y. Fujimoto, T. Miura, K. Nishiwaki, and M. Sakamoto, Dynamical generation of fermion mass hierarchy in an extra dimension, Phys. Rev. D 97, 115039 (2018).

[30] Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, K. Takenaga, P. H. Tanaka, and I. Ueba, Dynamical generation of quark/lepton mass hierarchy in an extra dimension, Prog. Theor. Exp. Phys. 2019, 123B02 (2019).

[31] F. Nortier, Large star/rose extra dimension with small leaves/petals, Int. J. Mod. Phys. A 35, 2050182 (2020).

[32] Y. Fujimoto, T. Inoue, M. Sakamoto, K. Takenaga, and I. Ueba, 5D Dirac fermion on quantum graph, J. Phys. A 52, 455401 (2019).

[33] A. Schnyder, S. Ryu, A. Furusaki, and A. Ludwig, Clas- sification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[34] A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009).

[35] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[36] G. Y. Cho, K. Shiozaki, S. Ryu, and A. W. W. Ludwig, Relationship between symmetry protected topological phases and boundary conformal field theories via the entanglement spectrum, J. Phys. A 50, 304002 (2017).

[37] B. Han, A. Tiwari, C.-T. Hsieh, and S. Ryu, Boundary conformal field theory and symmetry protected topological phases in 2 1 dimensions, Phys. Rev. B 96, 125105 (2017).

[38] D. B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288, 342 (1992).

[39] M. R. Zirnbauer, Riemannian symmetric superspaces and their origin in random-matrix theory, J. Math. Phys. (N.Y.) 37, 4986 (1996).

[40] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid struc- tures, Phys. Rev. B 55, 1142 (1997).

[41] T. Kugo and P. K. Townsend, Supersymmetry and the division algebras, Nucl. Phys. B221, 357 (1983).

[42] C. G. Callan, Jr. and J. A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B250, 427 (1985).

[43] E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88, 035001 (2016).

[44] E. Witten and K. Yonekura, Anomaly inflow and the η- invariant, in Proceedings of the Shoucheng Zhang Memorial Workshop (Stanford, CA, 2019), p. 9, arXiv:1909.08775.

[45] L. Fidkowski and A. Kitaev, The effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81, 134509 (2010).

[46] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011).

[47] S. Ryu and S.-C. Zhang, Interacting topological phases and modular invariance, Phys. Rev. B 85, 245132 (2012).

[48] L. Fidkowski, X. Chen, and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev. X 3, 041016 (2013).

[49] C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89, 195124 (2014); 91, 239902(E) (2015).

[50] Y.-Z. You and C. Xu, Symmetry protected topological states of interacting fermions and bosons, Phys. Rev. B 90, 245120 (2014).

[51] T. Morimoto, A. Furusaki, and C. Mudry, Breakdown of the topological classification Z for gapped phases of noninter- acting fermions by quartic interactions, Phys. Rev. B 92, 125104 (2015).

[52] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, Fermionic symmetry protected topological phases and cobordisms, J. High Energy Phys. 12 (2015) 052.

[53] S. Ryu, J. E. Moore, and A. W. W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85, 045104 (2012).

[54] X.-G. Wen, Classifying gauge anomalies through sym- metry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013).

[55] C.-T. Hsieh, G. Y. Cho, and S. Ryu, Global anomalies on the surface of fermionic symmetry-protected topological phases in (3 1) dimensions, Phys. Rev. B 93, 075135 (2016).

[56] E. Witten, The parity anomaly on an unorientable manifold, Phys. Rev. B 94, 195150 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る