リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「カーボンドットの液相合成法の探究と蛍光特性の改善 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

カーボンドットの液相合成法の探究と蛍光特性の改善 (本文)

慶長, 泰周 慶應義塾大学

2021.03.23

概要

CDs は高い環境親和性および安定性を有するため、次世代ナノ蛍光体として期待されている。しかし、QDs やペロブスカイト型ナノ結晶などのほかのナノ蛍光体と比較すると、PLQY や色純度などの蛍光特性の改善が求められる。さらに、CDs の蛍光特性は合成法および原料によって多様に変化するため、優れた蛍光特性を有する CDs の簡便な合成法の確立が求められている。そこで本論文では、異なる合成法および原料から作製された CDsの特性評価から、CDs の蛍光メカニズムおよび形成メカニズムの探究を行った。得られた知見をもとに蛍光特性の改善および CDs の簡便な合成法の確立を試みた。

本章では、CDs の特徴、合成法の変遷、形成メカニズム、構造および蛍光メカニズムについて紹介した。第 2 章では試料の特性評価法をまとめた。第 3 章から第 6 章では、それぞれ異なる原料および合成法を用いて CDs を作製し、特性評価を行い、各 CDs の蛍光メカニズムおよび形成メカニズムを探究した。第 3 章から第 6 章までの概要を以下に示す。

第 3 章では、単糖類のひとつで天然に大量に存在する D-グルコースを原料として着目し、環境に優しく容易な水熱合成によって CDs を作製した。その際、反応溶液の温度を一定に制御でき、均一かつ迅速に加熱できるマイクロ波加熱装置を用いた。水熱時間を 5–60 min に変化させて CDs を作製し、粒子形態、結晶性、グラファイト構造、化学結合状態、吸光特性および蛍光特性をそれぞれ評価した。また、水熱時間 60 min で作製された CDs 水分散液の pH を 1–13 に変化させて、吸光特性および蛍光特性をそれぞれ評価した。以上の評価から、D-グルコース誘導 CDs の蛍光メカニズムを探究した。

第 4 章では、CDs の PLQY を向上させるためにアミノ酸の 1 種で生体親和性が高く分子中に N および S のヘテロ原子を含む L-システインを原料として着目し、第 3 章と同様のマイクロ波加熱装置を用いて水熱合成によって CDs を作製した。水熱温度、水熱時間、水熱合成時の pH および L-システイン濃度をそれぞれ変化させて CDs を作製し、吸光特性、蛍光特性、粒子形態、化学結合状態および含有元素を評価した。異なる反応条件が CDsの特性に与える影響から、CDs の形成メカニズムおよび蛍光メカニズムを探究し、CDs の最適反応条件を調査した。

第 5 章では、原料 L-システイン分子間の脱水縮重合反応を促進させ CDsの形成を促進させるために、従来広く行われてきた水熱合成のような水溶媒ではなく、非水溶媒を用いた反応場に着目した。また、脱水縮重合反応で生じた水を系外に排出させ反応をさらに促進させるために、オートクレーブのような密閉反応場ではなく、開放反応場に着目した。非水溶媒として 258 °C の高沸点を有するジフェニルエーテルを選択し[1-116]、開放反応場で 230 °C、30 min の条件で加熱を施し、L-システインから CDs を作製した。比較として、同一の加熱温度および時間で水熱合成によって、L-システインから CDs を作製した。非水溶媒および水溶媒で作製された L-システイン誘導 CDs の含有元素分析、粒子形態および化学結合状態の評価から、異なる反応場が CDs の蛍光特性および形成に与える影響を探究した。さらに、加熱時間、加熱温度および L-システイン濃度を変化させて非水溶媒中で CDs を作製し、反応条件の最適化を試みた。

第 6 章では、CDs の蛍光色純度の改善および多色蛍光の実現のために、第 3 章から第 5 章までで用いた非芳香族化合物ではなく、芳香族化合物であるフロログルシノールに原料として着目した。第 5 章で得られた知見をもとに、207 °C の高沸点を有する 1,2-ペンタンジオールを合成溶媒に用いた開放反応場に着目した。フロログルシノールの脱水縮重合反応を促進させる高沸点溶媒を用いた開放反応場で 180 °C、6 h の条件で加熱を施し、狭帯域蛍光 CDs の作製を試みた。CDs の蛍光色を変化させる簡便な方法として蛍光ソルバトクロミズムに着目し、異なる極性の溶媒に CDs を分散させて蛍光色の調整を試みた。さらに、異なるポリマーに CDs を分散させ、CDs ポリマー複合フィルムを作製し蛍光特性を評価することで、CDs の広色域ディスプレイおよび LED 応用の可能性を検討した。

最後に、第 7 章では本論文を総括し、抽出された課題と今後の展望をまとめた。

この論文で使われている画像

参考文献

第 1 章の参考文献

[1-1] S. N. Baker, G. A. Baker, “Luminescent carbon nanodots: emergent nanolights”, Angew. Chem. Int. Ed., 49(38), 6726–6744 (2010).

[1-2] K. Hola, Y. Zhang, Y. Wang, E. P. Giannelis, R. Zboril, A. L. Rogach, “Carbon dots–Emerging light emitters for bioimaging, cancer therapy and optoelectronics”, Nano Today, 9(5), 590–603 (2014).

[1-3] X. T. Zheng, A. Anathanarayanan, K. Q. Luo, P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications”, Small, 11(14), 1620–1636 (2015).

[1-4] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments”, J. Am. Chem. Soc., 126(40), 12736–12737 (2004).

[1-5] Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S.-Y. Xie, “Quantum-sized carbon dots for bright and colorful photoluminescence”, J. Am. Chem. Soc., 128(24), 7756–7757 (2006).

[1-6] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies”, Nat. Photonics, 7, 13–23 (2013).

[1-7] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots”, Nat. Photonics, 1, 717–722 (2007).

[1-8] O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, “Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking”, Nat. Mater., 12, 445–451 (2013).

[1-9] W. K. Bae, M. K. Nam, K. Char, S. Lee, “Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1−xZnxS/ZnS nanocrystals”, Chem. Mater., 20(16), 5307–5313 (2008).

[1-10] X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, X. W. Sun, “Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes”, Adv. Mater., 24(30), 4180–4185 (2012).

[1-11] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut”, Nano Lett., 15(6), 3692–3696 (2015).

[1-12] F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology”, ACS Nano, 9(4), 4533–4542 (2015).

[1-13] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li, “Morphology evolution and degradation of CsPbBr3 Nanocrystals under blue light-emitting diode illumination”, ACS Appl. Mater. Interfaces, 9(8), 7249–7258 (2017).

[1-14] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots”, ACS Nano, 6(6), 5102–5110 (2012).

[1-15] P.-C. Hsu, H.-T. Chang, “Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups”, Chem. Commun., 48(33), 3984–3986 (2012).

[1-16] C.-L. Li, C.-C. Huang, A. P. Periasamy, P. Roy, W.-C. Wu, C.-L. Hsu, H.-T. Chang, “Synthesis of photoluminescent carbon dots for the detection of cobalt ions”, RSC Adv., 5(3), 2285–2291 (2015).

[1-17] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, “Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging”, Angew. Chem. Int. Ed., 52(14), 3953–3957 (2013).

[1-18] T. Ogi, H. Iwasaki, K. Aishima, F. Iskandar, W.-N. Wang, K. Takimiya, K. Okuyama, “Transient nature of graphene quantum dot formation via a hydrothermal reaction”, RSC Adv., 4(99), 55709–55715 (2014).

[1-19] Y. Hu, J. Yang, J. Tian, J.-S. Yu, “How do nitrogen-doped carbon dots generate from molecular precursors? An investigation of the formation mechanism and a solution-based large-scale synthesis”, J. Mater. Chem. B, 3(27), 5608–5614 (2015).

[1-20] Z.-Q. Xu, J.-Y. Lan, J.-C. Jin, P. Dong, F.-L. Jiang, Y. Liu, “Highly photoluminescent nitrogen-doped carbon nanodots and their protective effects against oxidation stress on cells”, ACS Appl. Mater. Interfaces, 7(51), 28346– 28352 (2015).

[1-21] L. Yang, W. Jiang, L. Qiu, X. Jiang, D. Zuo, D. Wang, L. Yang, “One pot synthesis of highly glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging”, Nanoscale, 7(14), 6104–6113 (2015).

[1-22] D. Pan, J. Zhang, Z. Li, M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots”, Adv. Mater., 22(6), 734–738 (2010).

[1-23] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, “Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties”, Chem. Commun., (34), 5118–5120 (2009).

[1-24] X. Jia, J. Li, E. Wang, “One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence”, Nanoscale, 4(18), 5572–5575 (2012).

[1-25] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective”, Nano Res., 8(2), 355–381 (2015).

[1-26] D. Qu, Z. Sun, “The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route”, Mater. Chem. Front., 4(2), 400–420 (2020).

[1-27] M. L. Liu, B. B. Chen, C. M. Li, C. Z. Huang, “Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications”, Green Chem., 21(3), 449–471 (2019).

[1-28] S. Tao, S. Zhu, T. Feng, C. Xie, Y. Song, B. Yang, “The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review”, Mater. Today Chem., 6, 13–25 (2017).

[1-29] B. Zhi, X. Yao, Y. Cui, G. Orr, C. L. Haynes, “Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots”, Nanoscale, 11(43), 20411–20428 (2019).

[1-30] K. J. Mintz, Y. Zhou, R. M. Leblanc, “Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure”, Nanoscale, 11(11), 4634–4652 (2019).

[1-31] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, “Carbon dots for multiphoton bioimaging”, J. Am. Chem. Soc., 129(37), 11318–11319 (2007).

[1-32] S.-T. Yang, L. Cao, P. G. Luo, F. Lu, X. Wang, H. Wang, M. J. Meziani, Y. Liu, G. Qi, Y.-P. Sun, “Carbon dots for optical imaging in vivo”, J. Am. Chem. Soc., 131(32), 11308–11309 (2009).

[1-33] S.-T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, Y.-P. Sun, “Carbon dots as nontoxic and high-performance fluorescence imaging agents”, J. Phys. Chem. C, 113(42), 18110–18114 (2009).

[1-34] Y. Song, S. Zhu, B. Yang, “Bioimaging based on fluorescent carbon dots”, RSC Adv., 4(52), 27184–27200 (2014).

[1-35] S. Pandey, M. Thakur, A. Mewada, D. Anjarlekar, N. Mishra, M. Sharon, “Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging”, J. Mater. Chem. B, 1(38), 4972–4982 (2013).

[1-36] C. Wang, Z. Xu, H. Cheng, H. Lin, M. G. Humphrey, C. Zhang, “A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature”, Carbon, 82, 87–95 (2015).

[1-37] M. A. H.-Rodriguez, M. M. Afonso, J. A. Palenzuela, I. R. Martin, K. S.- Carracedo, “Carbon dots as temperature nanosensors in the physiological range”, J. Lumin., 196, 313–315 (2018).

[1-38] X. Cui, Y. Wang, J. Liu, Q. Yang, B. Zhang, Y. Gao, Y. Wang, G. Lu, “Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions”, Sens. Actuators, B, 242, 1272–1280 (2017).

[1-39] Y. Guo, Z. Wang, H. Shao, X. Jiang, “Hydrothermal synthesis of fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions”, Carbon, 52, 583–589 (2013).

[1-40] Y. Zhong, J. Li, Y. Jiao, G. Zuo, X. Pan, T. Su, W. Dong, “One-step synthesis of orange luminescent carbon dots for Ag+ sensing and cell imaging”, J. Lumin., 190, 188–193 (2017).

[1-41] K. Zhuo, D. Sun, P. Xu, C. Wang, Y. Cao, Y. Chen, J. Liu, “Green synthesis of sulfur-and nitrogen-co-doped carbon dots using ionic liquid as a precursor and their application in Hg2+ detection”, J. Lumin., 187, 227–234 (2017).

[1-42] G. Wei, Z. Zhao, J. Du, P. Li, Z. Sun, L. Huo, Y. Gao, “Reed-derived fluorescent carbon dots as highly selective probes for detecting Fe3+ and excellent cell-imaging agents”, RSC Adv., 9(38), 21715–21723 (2019).

[1-43] V. A. Ansi, M. K. Renuka, “Table sugar derived carbon dot – a naked eye sensor for toxic Pb2+ ions”, Sens. Actuators, B, 264, 67–75 (2018).

[1-44] Y. Kim, J. Kim, “Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum”, Opt. Mater., 99, 109514 (2020).

[1-45] C. Yu, T. Xuan, D. Yan, S. Lou, X. Hou, Y. Chen, J. Wang, H. Li, “Sesame-derived ions co-doped fluorescent carbon nanoparticles for bio-imaging, sensing and patterning applications”, Sens. Actuators, B, 253, 900–910 (2017).

[1-46] X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes”, ACS Nano, 7(12), 11234–11241 (2013).

[1-47] X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, “Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization”, Adv. Mater., 30(1), 1704740 (2018).

[1-48] L. Li, T. Dong, “Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping”, J. Mater. Chem. C, 6(30), 7944–7970 (2018).

[1-49] P. G. Luo, F. Yang, S.-T. Yang, S. K. Sonkar, L. Yang, J. J. Broglie, Y. Liu, Y.-P. Sun, “Carbon-based quantum dots for fluorescence imaging of cells and tissues”, RSC Adv., 4(21), 10791–10807 (2014).

[1-50] J. Wang, C.-F. Wang, S. Chen, “Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns”, Angew. Chem. Int. Ed., 51(37), 9297–9301 (2012).

[1-51] S. Sahu, B. Behera, T. K. Maiti, S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio- imaging agents”, Chem. Commun., 48(70), 8835–8837 (2012).

[1-52] Z. Li, Y. Zhang, Q. Niu, M. Mou, Y. Wu, X. Liu, Z. Yan, S. Liao, “A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water”, J. Lumin., 187, 274–280 (2017).

[1-53] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. A.- Youbi, X. Sun, “Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions”, Adv. Mater., 24, 2037–2041 (2012).

[1-54] J. Yu, N. Song, Y. Zhang, S. Zhang, A. Wang, J. Chen, “Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+”, Sens. Actuators B, 214, 29–35 (2015).

[1-55] S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation”, J. Mater. Chem., 19(4), 484–488 (2009).

[1-56] J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, “An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)”, J. Am. Chem. Soc., 129(4), 744–745 (2007).

[1-57] J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. R.-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, P. M. Ajayan, “Graphene Quantum Dots Derived from Carbon Fibers”, Nano Lett., 12(2), 844–849 (2012).

[1-58] Y. Dong, C. Chen, X. Zheng, Lili. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C. M. Li, “One-step and high yield simultaneous preparation of single-and multi- layer graphene quantum dots from CX-72 carbon black”, J. Mater. Chem., 22(18), 8764–8766 (2012).

[1-59] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E. P. Giannelis, “Surface functionalized carbogenic quantum dots”, Small, 4(4), 455–458 (2008).

[1-60] P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, H.-T. Chang, “Synthesis and analytical applications of photoluminescent carbon nanodots”, Green Chem., 14(4), 917–920 (2012).

[1-61] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, “Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid”, Carbon, 50, 4738–4743 (2012).

[1-62] J. Jiang, Y. He, S. Li, H. Cui, “Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement”, Chem. Commun., 48(77), 9634–9636 (2012).

[1-63] A. Cayuela, C. C.-Carrion, M. L. Soriano, W. J. Parak, M. Valcarcel, “One-step synthesis and characterization of N-doped carbon nanodots for sensing in organic media”, Anal. Chem., 88(6), 3178–3185 (2016).

[1-64] Y. Zhuo, H. Miao, D. Zhong, S. Zhu, X. Yang, “One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging”, Mater. Lett., 139, 197–200 (2015).

[1-65] S. Qu, D. Zhou, D. Li, W. Ji, P. Jing, D. Han, L. Liu, H. Zeng, D. Shen, “Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering”, Adv. Mater., 28(18), 3516–3521 (2016).

[1-66] X. Wang, L. Cao, S.-T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, Y.-P. Sun, “Bandgap-like strong fluorescence in functionalized carbon nanoparticles”, Angew. Chem., 49(31), 5310–5314 (2010).

[1-67] C. Fowley, B. McCaughan, A. Devlin, I. Yildiz, F. M. Raymo, J. F. Callan, “Highly luminescent biocompatible carbon quantum dots by encapsulation with an amphiphilic polymer”, Chem. Commun., 48(75), 9361–9363 (2012).

[1-68] Y.-P. Sun, X. Wang, F. Lu, L. Cao, M. J. Meziani, P. G. Luo, L. Gu, L. M. Veca, “Doped carbon nanoparticles as a new platform for highly photoluminescent dots”, J. Phys. Chem. C, 112(47), 18295–18298.

[1-69] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, “Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission”, Angew. Chem. Int. Ed., 52(30), 7800–7804 (2013).

[1-70] K. Jiang, S. Sun, L. Zhang, Y. Wang, C. Cai, H. Lin, “Bright-yellow- emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing”, ACS Appl. Mater. Interfaces, 7(41), 23231–23238 (2015).

[1-71] X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, “B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection”, Analyst, 139(10), 2322–2325 (2014).

[1-72] Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, “Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor”, ACS Appl. Mater. Interfaces, 6(9), 6797–6805 (2014).

[1-73] S. Chandra, P. Patra, S. H. Pathan, S. Poy, S. Mitra, A. Layek, R. Bhar, P. Pramanik, A. Goswami, “Luminescent S-doped carbon dots: an emergent architecture for multimodal applications”, J. Mater. Chem. B, 1(18), 2375–2382 (2013).

[1-74] F. Li, T. Li, C. Sun, J. Xia, Y. Jiao, H. Xu, “Selenium-doped carbon quantum dots for free radical scavenging”, Angew. Chem. Int. Ed., 56(33), 9910– 9914 (2017).

[1-75] H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, A.-J. Wang, “Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging”, Sens. Actuators, B, 226, 506–511 (2016).

[1-76] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, “Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform”, Chem. Eur. J., 20(8), 2254–2263 (2014).

[1-77] J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, “Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix”, Nanoscale, 8(8), 4742–4747 (2016).

[1-78] Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, “Multifunctional N,S co- doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione”, Carbon, 104, 169–178 (2016).

[1-79] A. Bhattacharya, S. Das, T. K. Mukherjee, “Insights into the thermodynamics of polymer nanodot–human serum albumin association: a spectroscopic and calorimetric approach”, Langmuir, 32(46), 12067–12077 (2016).

[1-80] Y.-W. Zeng, D.-K. Ma, W. Wang, J.-J. Chen, L. Zhou, Y.-Z. Zheng, K. Yu, S.-M. Huang, “N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids”, Appl. Surf. Sci., 342, 136–143 (2015).

[1-81] P. Ni, Q. Li, C. Xu, H. Lai, Y. Bai, T. Chen, “Optical properties of nitrogen and sulfur co-doped carbon dots and their applicability as fluorescent probes for living cell imaging”, Appl. Surf. Sci., 494, 377–383 (2019).

[1-82] Y. Zhang, J. He, “Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties”, Phys. Chem. Chem. Phys., 17(31), 20154–20159 (2015).

[1-83] S. Zou, C. Hou, H. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Huo, M. Yang, “An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from L-cysteine”, Sens. Actuators, B, 239, 1033–1041 (2017).

[1-84] S. Y. Lim, W. Shen, Z. Gao, “Carbon quantum dots and their applications”, Chem. Soc. Rev., 44(1), 362–381 (2015).

[1-85] K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, “Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging”, Angew. Chem. Int. Ed., 54(18), 5360–5363 (2015).

[1-86] T. Zhang, J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang, H. Song, “A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission”, 9(35), 13042–13051 (2017).

[1-87] H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao, H.-M. Xiong, “Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths”, Small, 14(22), 1800612 (2018).

[1-88] R. Sato, Y. Iso, T. Isobe, “Fluorescence solvatochromism of carbon dot dispersions prepared from phenylenediamine and optimization of red emission”, Langmuir, 35(47), 15257–15266 (2019).

[1-89] H. Wang, C. Sun, X. Chen, Y. Zhang, V. L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W. W. Yu, “Excitation wavelength independent visible color emission of carbon dots”, Nanoscale, 9(5), 1909–1915 (2017).

[1-90] S. Lin, C. Lin, M. He, R. Yuan, Y. Zhang, Y. Zhou, W. Xiang, X. Liang, “Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs”, RSC Adv., 7(66), 41552–41560 (2017).

[1-91] Y. Liu, M. Zhang, Y. Wu, R. Zhang, Y. Cao, X. Xu, X. Xhen, L. Cai, Q. Xu, “Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes”, Chem. Commun., 55(81), 12164– 12167 (2019).

[1-92] Y. Ding, J. Zheng, J. Wang, Y. Yang, X. Liu, “Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature”, J. Mater. Chem. C, 7(6), 1502–1509 (2019).

[1-93] W. Cai, T. Zhang, M. Xu, M. Zhang, Y. Guo, L. Zhang, J. Street, W.-J. Ong, Q. Xu, “Full color carbon dots through surface engineering for constructing white light-emitting diodes”, J. Mater. Chem. C, 7(8), 2212–2218 (2019).

[1-94] M. Vedamalai, A. P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, “Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells”, Nanoscale, 6(21), 13119–13125 (2014).

[1-95] F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, “Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes”, Adv. Mater., 29(3), 1604436 (2017).

[1-96] Z. Wang, F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, S. Yang, “53% efficient red emissive carbon quantum dots for high color rendering and stable warm white- light-emitting diodes”, Adv. Mater., 29(37), 1702910–1702916 (2017).

[1-97] M. Wu, J. Zhan, B. Geng, P. He, K. Wu, L. Wang, G. Xu, Z. Li, L. Yin, D. Pan, “Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs”, Nanoscale, 9(35), 13195–13202 (2017).

[1-98] F. Huo, W. Liang, Y. Tang, W. Zhang, X. Liu, D. Pei, H. Wang, W. Jia, P. Jia, F. Yang, “Full-color carbon dots with multiple red-emission tuning: on/off sensors, in vitro and in vivo multicolor bioimaging”, J. Mater. Sci., 54, 6815–6825 (2019).

[1-99] J. Zhan, B. Geng, K. Wu, G. Xu, L. Wang, R. Guo, B. Lei, F. Zheng, D. Pan, M. Wu, “A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence”, Carbon, 130, 153– 163 (2018).

[1-100] Y. Wang, Q. Su, X. Yang, “Exploration of the synthesis of three types of multicolor carbon dot originating from isomers”, Chem. Commun., 54(80), 11312– 11315 (2018).

[1-101] S. Ghosh, H. Ali, N. R. Jana, “Water dispersible red fluorescent carbon nanoparticles via carbonization of resorcinol”, ACS Sustainable chem. Eng., 7(14), 12629–12637 (2019).

[1-102] F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs”, Nat. Commun., 9, 2249–2259 (2018).

[1-103] F. Yuan, P. He, Z. Xi, X. Li, H. Zhong, L. Fan, S. Yang, “Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays”, Nano Res., 12, 1669–1674 (2019).

[1-104] F. Yuan, Z. Xi, X. Shi, Y. Li, X. Li, Z. Wang, L. Fan, S. Yang, “Ultrastable and low-threshold random lasing from narrow-bandwidth-emission triangular carbon quantum dots”, Adv. Opt. Mater., 7(2), 1801202 (2019).

[1-105] Z. Han, Y. Ni, J. Ren, W. Zhang, Y. Wang, Z. Xie, S. Zhou, S. F. Yu, “Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers”, Nanoscale, 11(24), 11577–11583 (2019).

[1-106] Y. Liu, H. Gou, X. Huang, G. Zhang, K. Xi, X. Jia, “Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two- photon bioimaging”, Nanoscale, 12(3), 1589–1601 (2020).

[1-107] F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, S. Yang, “Shining carbon dots: synthesis and biomedical and optoelectronic applications”, Nano Today, 11, 565– 586 (2016).

[1-108] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives”, Nanoscale, 5(10), 4015–4039 (2013).

[1-109] H. Peng, J. T.-Sejdic, “Simple aqueous solution route to luminescent carbogenic dots from carbohydrates”, Chem. Matter., 21(23), 5563–5565 (2009).

[1-110] T. V. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications”, J. Mater. Chem. C, 7(24), 7175–7195 (2019).

[1-111] H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, “Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots”, Adv. Sci., 6(13), 1900397 (2019).

[1-112] Q. Xu, W. Li, L. Ding, W. Yang, H. Xiao, W.-J. Ong, “Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications”, Nanoscale, 11(4), 1475–1504 (2019).

[1-113] K. Yuan, X. Zhang, R. Qin, X. Ji, Y. Cheng, L. Li, X. Yang, Z. Lu, H. Liu, “Surface state modulation of red emitting carbon dots for white light-emitting diodes”, J. Mater. Chem. C, 6(46), 12631–12637 (2018).

[1-114] S. Hu, A. Trinchi, P. Atkin, I. Cole, “Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light”, Angew. Chem. Int. Ed., 54, 2970–2974 (2015).

[1-115] M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, “Revealing the tunable photoluminescence properties of graphene quantum dots”, J. Mater. Chem. C, 2(34), 6954–6960 (2014).

[1-116] transl, M. Eagleson, “Concise encyclopedia chemistry”, Walter de Gruyter, p. 330 (1994).

第 2 章の参考文献

[2-1] H. R. Verma, “Atomic and nuclear analytical methods”, Springer, p. 233 (2007).

[2-2] R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, “Spectrometric identification of organic compounds”, 8th edition, Wiley, p. 187 (2014).

[2-3] I. M. Smallwood, “Handbook of organic solvent properties”, Elsevier Science & Technology, pp. 61, 65, 187, 245, 253, 301 (1996).

[2-4] T. Fabritius, E. Alarousu, T. Prykäri, J. Hast, R, Myllylä, “Characterisation of optically cleared paper by optical coherence tomography”, Quantum Electron., 36(2), 181–187 (2006).

第 3 章の参考文献

[3-1] H. Peng, J. T.-Sejdic, “Simple aqueous solution route to luminescent carbogenic dots from carbohydrates”, Chem. Mater., 21(23), 5563–5565 (2009).

[3-2] H. Chen, L. Lin, Z. Lin, C. Lu, G. Guo, J.-M. Lin, “Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate- hydrogen peroxide chemiluminescent reaction”, Analyst, 136(9), 1957–1964 (2011).

[3-3] L. Li, Y. Zhang, S. Li, X. Wang, C. Li, S. Ge, J. Yu, M. Yan, X. Song, “Ultrasensitive electrochemiluminescence immunoassay for tumor marker based on quantum dots coated carbon nanospheres”, J. Lumin., 144, 6–12 (2013).

[3-4] Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy”, ACS Appl. Mater. Interfaces, 8(25), 15904–15910 (2016).

[3-5] M. Liu, W. Chen, “Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction”, Nanoscale, 5(24), 12558–12564 (2013).

[3-6] Z.-C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X.-H. Zhang, H. Tan, A. Y. Chang, X. Li, J. Wang, “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate”, Chem. Commun., 47(42), 11615–11617 (2011).

[3-7] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self- passivated graphene quantum dots”, ACS Nano, 6(6), 5102–5110 (2012).

[3-8] M. Amjadi, T. Hallaj, “Dramatic enhancement effect of carbon quantum dots on the chemiluminescence of Ru(bpy)32+–Ce(IV) reaction and application to the determination of 4-nitrophenol”, J. Lumin., 171, 202–207 (2016).

[3-9] M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos, N. Hildebrandt, “Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole”, Sens. Actuators, B, 244, 425–432 (2017).

[3-10] T. V. Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications”, J. Mater. Chem. C, 7(24), 7175–7195 (2019).

[3-11] T.-F. Yeh, S.-J. Chen, H. Teng, “Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition”, Nano Energy, 12, 476–485 (2015).

[3-12] E. Blanco, G. Blanco, J. M. González-Leal, M.C. Barrera, M. Dominguez, and M. Ramirez-Del-Solar, “Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence”, J. Nanopart. Res., 17(5), (2015).

[3-13] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, “Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties”, Chem. Commun., 45(34), 5118–5120 (2009).

[3-14] S. Niino, S. Takeshita, Y. Iso, T. Isobe, “Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots”, J. Lumin., 180, 123–131 (2016).

[3-15] H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism”, ACS Nano, 10(1), 484–491 (2016).

[3-16] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, “Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis”, J. Mater. Chem. A, 5(8), 3717–3734 (2017).

[3-17] 柳田祥三, 松村竹子, “化学を変えるマイクロ波触”, 化学同人, pp. 9– 22 (2004).

[3-18] Y. Yoshimura, T. Ohe, “Textile processing by microwave heating”, Sen’i Gakkaishi, 66(10), 339–343 (2010).

[3-19] N. Sakai, “Dielectric properties of food and microwave heating”, J. Food Sci. Technol., 11(1), 19–30 (2010).

第 4 章の参考文献

[4-1] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, “Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission”, Angew. Chem. Int. Ed., 52, 7800–7804 (2013).

[4-2] H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, A.-J. Wang, “Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging”, Sens. Actuators, B, 226, 506–511 (2016).

[4-3] A. Cayuela, C. C.-Carrion, M. L. Soriano, W. J. Parak, M. Valcarcel, “One- step synthesis and characterization of N-doped carbon nanodots for sensing in organic media”, Anal. Chem., 88(6), 3178–3185 (2016).

[4-4] K. Jiang, S. Sun, L. Zhang, Y. Wang, C. Cai, H. Lin, “Bright-yellow- emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing”, ACS Appl. Mater. Interfaces, 7(41), 23231–23238 (2015).

[4-5] X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, “B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection”, Analyst, 139(10), 2322–2325 (2014).

[4-6] Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, “Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor”, ACS Appl. Mater. Interfaces, 6(9), 6797–6805 (2014).

[4-7] S. Chandra, P. Patra, S. H. Pathan, S. Poy, S. Mitra, A. Layek, R. Bhar, P. Pramanik, A. Goswami, “Luminescent S-doped carbon dots: an emergent architecture for multimodal applications”, J. Mater. Chem. B, 1(18), 2375–2382 (2013).

[4-8] F. Li, T. Li, C. Sun, J. Xia, Y. Jiao, H. Xu, “Selenium-doped carbon quantum dots for free radical scavenging”, Angew. Chem. Int. Ed., 56(33), 9910–9914 (2017).

[4-9] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, “Highly luminescent N- doped carbon quantum dots as an effective multifunctional fluorescence sensing platform”, Chem. Eur. J., 20(8), 2254–2263 (2014).

[4-10] J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, “Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix”, Nanoscale, 8(8), 4742–4747 (2016).

[4-11] J.-M. Wei, B.-T. Liu, X. Zhang, C.-C. Song, “One-pot synthesis of N, S co- doped photoluminescent carbon quantum dots for Hg2+ ion detection”, New Carbon Mater., 33(4), 333–340 (2018).

[4-12] C.-L. Li, C.-C. Huang, A. P. Periasamy, P. Roy, W.-C. Wu, C.-L. Hsu, H.-T. Chang, “Synthesis of photoluminescent carbon dots for the detection of cobalt ions”, RSC Adv., 5(3), 2285–2291 (2015).

[4-13] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self- passivated graphene quantum dots”, ACS Nano, 6(6), 5102–5110 (2012).

[4-14] Y.-W. Zeng, D.-K. Ma, W. Wang, J.-J. Chen, L. Zhou, Y.-Z. Zheng, K. Yu, S.-M. Huang, “N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids”, Appl. Surf. Sci., 342, 136–143 (2015).

[4-15] M. Liu, W. Chen, “Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction”, Nanoscale, 5(24), 12558–12564 (2013).

[4-16] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, “Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis”, J. Mater. Chem. A, 5(8), 3717–3734 (2017).

[4-17] H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism”, ACS Nano, 10(1), 484–491 (2016).

[4-18] N. B. Colthup, L. H. Daly, S. E. Wiberley, “Introduction to infrared and raman spectroscopy”, 3rd edition, Academic Press, pp. 371, 387, 388, 390, 391 (1990).

[4-19] D. Xiao, R. Pan, S. Li, J. He, M. Qi, S. Kong, Y. Gu, R. Lin, H. He, “Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection”, RSC Adv., 5(3), 2039–2046 (2015).

[4-20] A. Pawlukojć, J. Leciejewicz, A. J. R.-Cuesta, J. N.-Scheibe, “L-cysteine: neutron spectroscopy, Raman, IR and ab initio study”, Spectrochim. Acta, Part A, 61(11–12), 2474–2481 (2005).

[4-21] P. J. Larkin, Infrared and raman spectroscopy, 2nd edition, Elsevier, p. 261 (2017).

[4-22] P.-C. Hsu, H.-T. Chang, “Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups”, Chem. Commun., 48(33), 3984–3986 (2012).

[4-23] L. Guo, J. Ge, W. Liu, G. Niu, Q. Jia, H. Wang, P. Wang, “Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism”, Nanoscale, 8(2), 729–734 (2016).

[4-24] S. Fuchida, “Peptides formation for chemical evolution”, Chikyukagaku, 46(3), 171–180 (2012).

[4-25] Y. Zhang, J. He, “Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties”, Phys. Chem. Chem. Phys., 17(31), 20154–20159 (2015).

[4-26] S. Hu, A. Trinchi, P. Atkin, I. Cole, “Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light”, Angew. Chem. Int. Ed., 54, 2970–2974 (2015).

[4-27] C.-K. Shu, M. L. Hagedorn, B. D. Mookherjee, C.-T. Ho, “pH effect on the volatile components in the thermal degradation of cysteine”, J. Agric. Food Chem., 33(3), 442–446 (1985).

第 5 章の参考文献

[5-1] H. Wang, C. Sun, X. Chen, Y. Zhang, V. L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W. W. Yu, “Excitation wavelength independent visible color emission of carbon dots”, Nanoscale, 9(5), 1909–1915 (2017).

[5-2] transl, M. Eagleson, “Concise encyclopedia chemistry”, Walter de Gruyter, p. 330 (1994).

[5-3] T. Yoshinaga, Y. Iso, T. Isobe, “Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting L-cysteine-derived carbon dots”, J. Lumin., 213, 6–14 (2019).

[5-4] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, “Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission”, Angew. Chem. Int. Ed., 52(30), 7800–7804 (2013).

[5-5] C.-L. Li, C.-C. Huang, A. P. Periasamy, P. Roy, W.-C. Wu, C.-L. Hsu, H.-T. Chang, “Synthesis of photoluminescent carbon dots for the detection of cobalt ions”, RSC Adv., 5(3), 2285–2291 (2015).

[5-6] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self- passivated graphene quantum dots”, ACS Nano, 6(6), 5102–5110 (2012).

[5-7] M. Liu, W. Chen, “Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction nanoscale”, Nanoscale, 5(24), 12558–12564 (2013).

[5-8] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, “Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis”, J. Mater. Chem. A, 5(8), 3717–3734 (2017).

[5-9] H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism”, ACS Nano, 10(1), 484–491 (2016).

[5-10] N. B. Colthup, L. H. Daly, S. E. Wiberley, “Introduction to infrared and raman spectroscopy”, 3rd edition, Academic Press, pp. 219, 228, 229, 261, 263, 264, 268, 271, 319, 328, 373, 375, 377–379, 387, 388, 390–392, 427 (1990).

[5-11] P. J. Larkin, “Infrared and raman spectroscopy”, 2nd edition, Elsevier, p. 86 (2017).

[5-12] P.-C. Hsu, H.-T. Chang, “Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups”, Chem. Commun., 48(33), 3984–3986 (2012).

[5-13] A. Pawlukojć, J. Leciejewicz, A. J. R.-Cuesta, J. N.-Scheibe, “L-cysteine: neutron spectroscopy, Raman, IR and ab initio study”, Spectrochim. Acta, Part A, 61(11–12), 2474–2481 (2005).

[5-14] L. A. H. Bergen, G. Roos, F. D. Proft, “From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide”, J. Phys. Chem. A, 118(31), 6078–6084 (2014).

[5-15] C. Jacob, A. L. Holme, F. H. Fry, “The sulfinic acid switch in proteins”, Org. Biomol. Chem., 2(14), 1953–1956 (2004).

[5-16] C.-K. Shu, M. L. Hagedorn, B. D. Mookherjee, C.-T. Ho, “pH effect on the volatile components in the thermal degradation of cysteine”, J. Agric. Food Chem., 33(3), 442–446 (1985).

[5-17] D. Liu, M. M. Rahman, C. Ge, J. Kim, J.-J. Lee, “Highly stable and conductive PEDOT:PSS/graphene nanocomposites for biosensor applications in aqueous medium”, New J. Chem., 41(24), 15458–15465 (2017).

[5-18] B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, K. Siegbahn, “Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure”, Phys. Scr., 1(5– 6), 286–298 (1970).

[5-19] X. Li, Z. Zhao, C. Pan, “Electrochemical exfoliation of carbon dots with the narrowest full width at half maximum in their fluorescence spectra in the ultraviolet region using only water as electrolyte”, Chem. Commun., 52(60), 9406– 9409 (2016).

[5-20] J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, “Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix”, Nanoscale, 8(8), 4742–4747 (2016).

[5-21] S. Niino, S. Takeshita, Y. Iso, T. Isobe, “Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots”, J. Lumin., 180, 123–131 (2016).

[5-22] R. G. Pearson, “Hard and soft acids and bases”, J. Am. Chem. Soc., 85(22), 3533–3539 (1963).

[5-23] Y. Kim, J. Kim, “Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum”, Opt. Mater., 99, 109514 (2020).

第 6 章の参考文献

[6-1] F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, “Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes”, Adv. Mater., 29(3), 1604436 (2017).

[6-2] Z. Xie, F. Wang, C.-Y. Liu, “Organic–inorganic hybrid functional carbon dot gel glasses”, Adv. Mater., 24(13), 1716–1721 (2012).

[6-3] L. Bao, C. Liu, Z.-L. Zhang, D. W. Pang, “Photoluminescence‐tunable carbon nanodots: surface‐state energy‐gap tuning”, Adv. Mater., 27(10), 1663–1667 (2015).

[6-4] Y. Liu, C.-Y. Liu, Z.-Y. Zhang, “Graphitized carbon dots emitting strong green photoluminescence”, J. Mater. Chem. C, 1(32), 4902–4907 (2013).

[6-5] L. Pan, S. Sun, L. Zhang, K. Jiang, H. Lin, “Near-infrared emissive carbon dots for two-photon fluorescence bioimaging”, Nanoscale, 8(39), 17350–17356 (2016).

[6-6] Z. Han, Y. Ni, J. Ren, W. Zhang, Y. Wang, Z. Xie, S. Zhou, S. F. Yu, “Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers”, Nanoscale, 11(24), 11577–11583 (2019).

[6-7] F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs”, Nat. Commun., 9, 2249–2259 (2018).

[6-8] F. Yuan, P. He, Z. Xi, X. Li, H. Zhong, L. Fan, S. Yang, “Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays”, Nano Res., 12, 1669–1674 (2019).

[6-9] F. Yuan, Y.-K. Wang, G. Sharma, Y. Dong, X. Zheng, P. Li, A. Johnston, G. Bappi, J. Z. Fan, H. Kung, B. Chen, M. I. Saidaminov, K. Singh, O. Voznyy, O. M. Bakr, Z.-H. Lu, E. H. Sargent, “Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination”, Nat. Photonics, 14, 171–176 (2020).

[6-10] Y. Liu, H. Gou, X. Huang, G. Zhang, K. Xi, X. Jia, “Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two- photon bioimaging”, Nanoscale, 12(3), 1589–1601 (2020).

[6-11] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies”, Nat. Photonics, 7, 13–23 (2013).

[6-12] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots”, Nat. Photonics, 1, 717–722 (2007).

[6-13] O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.- S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, “Compact high-quality CdSe– CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking”, Nat. Mater., 12, 445–451 (2013).

[6-14] W. K. Bae, M. K. Nam, K. Char, S. Lee, “Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1−xZnxS/ZnS nanocrystals”, Chem. Mater., 20(16), 5307–5313 (2008).

[6-15] X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, X. W. Sun, “Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes”, Adv. Mater., 24(30), 4180–4185 (2012).

[6-16] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut”, Nano Lett., 15(6), 3692–3696 (2015).

[6-17] F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology”, ACS Nano, 9(4), 4533–4542 (2015).

[6-18] H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism”, ACS Nano, 10(1), 484–491 (2016).

[6-19] K. J. Mintz, Y. Zhou, R. M. Leblanc, “Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure”, Nanoscale, 11(11), 4634–4652 (2019).

[6-20] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, “Carbon based dots co-doped with nitrogen and sulfur for high quantum yield and excitation independent emission”, Angew. Chem. Int. Ed., 52(30), 7800–7804 (2013).

[6-21] R. Sato, Y. Iso, T. Isobe, “Fluorescence solvatochromism of carbon dot dispersions prepared from phenylenediamine and optimization of red emission”, Langmuir, 35(47), 15257–15266 (2019).

[6-22] T. Yoshinaga, M. Akiu, Y. Iso, T. Isobe, “Photoluminescence properties of L-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents”, J. Lumin., 224, 117260 (2020).

[6-23] S. Ghosh, H. Ali, N. R. Jana, “Water dispersible red fluorescent carbon nanoparticles via carbonization of resorcinol”, ACS Sustainable Chem. Eng., 7(14), 12629–12637 (2019).

[6-24] J. Xia, S. Chen, G.-Y. Zou, Y.-L. Yu, J.-H. Wang, “Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: from the mechanism to application in intracellular pH imaging”, Nanoscale, 10(47), 22484– 22492 (2018).

[6-25] H. Wang, C. Sun, X. Chen, Y. Zhang, V. L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W. W. Yu, “Excitation wavelength independent visible color emission of carbon dots”, Nanoscale, 9(5), 1909–1915 (2017).

[6-26] T. Zhang, J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang, H. Song, “A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission”, Nanoscale, 9(35), 13042–13051 (2017).

[6-27] J. Ren, J. Sun, X. Sun, R. Song, Z. Xie, S. Zhou, “Precisely controlled up/down-conversion liquid and solid state photoluminescence of carbon dots”, Adv. Opt. Mater., 6(14), 1800115–1800121 (2018).

[6-28] C. Reichardt, “Solvatochromic dyes as solvent polarity indicators”, Chem. Rev., 94(8), 2319–2358 (1994).

[6-29] K. Sato, R. Sato, Y. Iso, T. Isobe, “Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from p-phenylenediamine”, Chem. Commun., 56(14), 2174–2177 (2020).

[6-30] C. L. Yaws, “The yaws handbook of physical properties for hydrocarbons and chemicals”, 2nd edition, Elsevier, p. 84 (2015).

[6-31] E. M. Pérez, N. Martin, “π–π interactions in carbon nanostructures”, Chem. Soc. Rev., 44(18), 6425–6433 (2015).

[6-32] H. O. Pierson, H. K. Tonshoff, I. Inasaki, “Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications”, Elsevier, pp. 44, 45 (1994).

[6-33] Y. Song, C. Zhu, J. Song, H. Li, D. Du, Y. Lin, “Drug-derived bright and color-tunable N‑doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells”, ACS Appl. Mater. Interfaces, 9(8), 7399–7405 (2017).

[6-34] L. Jiang, H. Ding, S. Lu, T. Geng, G. Xiao, B. Zou, H. Bi, “Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior”, Angew. Chem. Int. Ed., 59(25), 9986–9991 (2020).

[6-35] X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, “Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform”, Chem. Commun., 51(13), 2544–2546 (2015).

[6-36] R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, “Spectrometric identification of organic compounds”, Wiley, pp. 137, 147, 184, 187 (2014).

[6-37] N. B. Colthup, L. H. Daly, S. E. Wiberley, “Introduction to infrared and raman spectroscopy”, 3rd edition, Elsevier, pp. 264, 266, 277, 333, 334, 387, 392, 428 (1990).

[6-38] P. J. Larkin, “Infrared and raman spectroscopy”, 2nd edition, Elsevier, pp. 118, 119, 185, 186 (2017).

[6-39] Z. Wang, F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, S. Yang, “53% efficient red emissive carbon quantum dots for high color rendering and stable warm white- light-emitting diodes”, Adv. Mater., 29(37), 1702910–1702916 (2017).

[6-40] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, “Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter”, Nat. Photonics, 13, 678–682 (2019).

[6-41] T. Yoshinaga, Y. Iso, T. Isobe, “Particulate, structural, and optical properties of D-glucose-derived carbon dots synthesized by microwave-assisted hydrothermal treatment”, ECS J. Solid State Sci. Technol., 7(1), R3034–R3039 (2018).

[6-42] T. Yoshinaga, Y. Iso, T. Isobe, “Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting L-cysteine-derived carbon dots”, J. Lumin., 213, 6–14 (2019).

[6-43] S. Lin, C. Lin, M. He, R. Yuan, Y. Zhang, Y. Zhou, W. Xiang, X. Liang, “Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs”, RSC Adv., 7(66), 41552–41560 (2017).

[6-44] H. J. Lee, J. Jana, Y.-L. T. Ngo, L. L. Wang, J. S. Chung, S. H. Hur, “The effect of solvent polarity on emission properties of carbon dots and their uses in chlorimetric sensors for water and humidity”, Mater. Res. Bull., 119, 110564 (2019).

[6-45] A. Pramanik, S. Biswas, P. Kumbhakar, “Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: conversion of bio-waste”, Spectrochim. Acta, Part A, 191, 498–512 (2018).

[6-46] N. Basu, D. Mandal, “Solvatochromic response of carbon dots: evidence of solvent interaction with different types of emission centers”, J. Phys. Chem. C, 122(32), 18732–18741 (2018).

[6-47] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self- passivated graphene quantum dots”, ACS Nano, 6(6), 5102–5110 (2012).

[6-48] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, “Highly photoluminescent carbon dots for multicolor patterning, sensing, and bioimaging”, Angew. Chem. Int. Ed., 52(14), 3953–3957 (2013).

[6-49] L. Yang, W. Jiang, L. Qiu, X. Jiang, D. Zuo, D. Wang, L. Yang, “One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging”, Nanoscale, 7(14), 6104–6113 (2015).

[6-50] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective”, Nano Res., 8, 355–381 (2015).

第 7 章の参考文献

[7-1] F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, “Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes”, Adv. Mater., 29(3), 1604436 (2017).

[7-2] Z. Xie, F. Wang, C.-Y. Liu, “Organic–inorganic hybrid functional carbon dot gel glasses”, Adv. Mater., 24(13), 1716–1721 (2012).

[7-3] L. Bao, C. Liu, Z.-L. Zhang, D. W. Pang, “Photoluminescence‐tunable carbon nanodots: surface‐state energy‐gap tuning”, Adv. Mater., 27(10), 1663–1667 (2015).

[7-4] T. Yoshinaga, Y. Iso, T. Isobe, “Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting L-cysteine-derived carbon dots”, J. Lumin., 213, 6–14 (2019).

[7-5] T. Yoshinaga, M. Akiu, Y. Iso, T. Isobe, “Photoluminescence properties of L-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents”, J. Lumin., 224, 117260 (2020).

[7-6] F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, “Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs”, Nat. Commun., 9, 2249 (2018).

[7-7] F. Yuan, P. He, Z. Xi, X. Li, H. Zhong, L. Fan, S. Yang, “Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays”, Nano Res., 12, 1669–1674 (2019).

[7-8] F. Yuan, Y.-K. Wang, G. Sharma, Y. Dong, X. Zheng, P. Li, A. Johnston, G. Bappi, J. Z. Fan, H. Kung, B. Chen, M. I. Saidaminov, K. Singh, O. Voznyy, O. M. Bakr, Z.-H. Lu, E. H. Sargent, “Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination”, Nat. Photonics, 14, 171–176 (2020).

[7-9] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, “Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter”, Nat. Photonics, 13, 678–682 (2019).

[7-10] L. P. Hammett, “The effect of structure upon the reactions of organic compounds. Benzene derivatives”, J. Am. Chem. Soc., 59(1), 96–103 (1937).

[7-11] M. Mizuno, M. Yamano, “A new practical one-pot conversion of phenols to anilines”, Org. Lett., 7(17), 3629–3631 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る