リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Edge states of Floquet–Dirac semimetal in a laser-driven semiconductor quantum-well」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Edge states of Floquet–Dirac semimetal in a laser-driven semiconductor quantum-well

Zhang, Boyuan 前島, 展也 日野, 健一 筑波大学 DOI:33536544

2022.07.19

概要

Band crossings observed in a wide range of condensed matter systems are recognized as a key to understand low‑energy fermionic excitations that behave as massless Dirac particles. Despite rapid progress in this field, the exploration of non‑equilibrium topological states remains scarce and it has potential ability of providing a new platform to create unexpected massless Dirac states. Here we show that in a semiconductor quantum‑well driven by a cw‑laser with linear polarization, the optical Stark effect conducts bulk‑band crossing, and the resulting Floquet‑Dirac semimetallic phase supports an unconventional edge state in the projected one‑dimensional Brillouin zone under a boundary condition that an electron is confined in the direction perpendicular to that of the laser polarization. Further, we reveal that this edge state mediates a transition between topological and non‑topological edge states that is caused by tuning the laser intensity. We also show that the properties of the edge states are strikingly changed under a different boundary condition. It is found that such difference originates from that nearly fourfold‑degenerate points exist in a certain intermediate region of the bulk Brillouin zone between high‑symmetry points.

この論文で使われている画像

参考文献

1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801–226804 (2005).

2. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

3. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

4. Qi, X. L. & Zhang, C. H. Topological insulators and superconductors. Rev. Mod. Phys. 85, 1057–1110 (2011).

5. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

6. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 09680 (2009).

7. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

8. Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

9. Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1–76 (2014).

10. Armitage, N. P. & Mele, E. J. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

11. Murakami, S. et al. Tuning phase transition between quantum spin Hall and ordinary insulating phases. Phys. Rev. B 76, 205304 (2007).

12. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

13. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

14. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

15. Wang, Z. et al. Dirac semimetal and topological phasetransitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

16. Wang, Z. et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

17. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

18. Park, S. & Yang, B.-J. Classification of accidental band crossings and emergent semimetals in two-dimensional noncentrosymmetric systems. Phys. Rev. B 96, 125127 (2017).

19. Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2. Sci. Rep. 4, 6106 (2014).

20. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

21. Kargariana, M., Randeriaa, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected?. PNAS 113, 8648–8652 (2016).

22. Doh, H. & Choi, H. J. Dirac-semimetal phase diagram of two-dimensional black phosphorus. 2D Mater. 4, 025071 (2017).

23. Ramankutty, S. V. et al. Electronic structure of the candidate 2D Dirac semimetal SrMnSb2: a combined experimental and theoreti- cal study. SciPost Phys. 4, 010 (2018).

24. Luo, W. et al. Two-dimensional topological semimetals protected by symmorphic symmetries. Phys. Rev. B 101, 195111 (2020).

25. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965).

26. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

27. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406R (2009).

28. Zhenghao, G. et al. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. Lett. 107, 216601–216605 (2011).

29. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

30. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

31. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

32. Wang, R. et al. Floquet Weyl semimetal induced by off-resonant light. EPL (Europhys. Lett.) 105, 17004 (2014).

33. Taguchi, K., Xu, D.-H., Yamakage, A. & Law, K. T. Photovoltaic anomalous Hall effect in line-node semimetals. Phys. Rev. B 94, 155206 (2016).

34. Hübener, H. et al. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2016).

35. Claassen, M., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Nat. Commun. 8, 1192 (2017).

36. Nakagawa, M., Slager, R.-J., Higashikawa, S. & Oka, T. Wannier representation of Floquet topological states. Phys. Rev. B 101, 075108 (2020).

37. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

38. Knight, P. L. & Milonni, P. W. The Rabi frequency in optical spectra. Phys. Rep. 66, 21–107 (1980).

39. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

40. Tamm, I. On the possible bound states of electrons on a crystal surface. Phys. Z. Sov. Union 1, 733–746 (1932).

41. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

42. Ohno, H. et al. Observation of ``Tamm States’’ in superlattices. Phys. Rev. Lett. 64, 2555–2558 (1990).

43. Volkov, V. A. & Enaldiev, V. V. Surface states of a system of Dirac fermions: a minimal model. J. Exp. Theor. Phys 122, 608–620 (2016).

44. Longhi, S. Zak phase of photons in optical waveguide lattices. Opt. Lett. 38, 3716–3719 (2013).

45. Wang, L. et al. Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals. Opt. Express 26, 28963– 28975 (2018).

46. Chen, T. et al. Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array. Ann. Phys. (Berlin) 531, 1900347 (2019).

47. Tsurimaki, Y. et al. Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection. ACS Photonics 5, 929–938 (2018).

48. Lu, H. et al. Topological insulator based Tamm plasmon polaritons. APL Photonics 4, 040801 (2019).

49. Henriques, J. C. G. et al. Topological photonic Tamm-states and the Su–Schrieffer–Heeger model. Phys. Rev. A 101, 043811 (2020).

50. Latyshev, Y. I. et al. Transport of massless Dirac fermions in non-topological type edge states. Sci. Rep. 4, 7578 (2014).

51. Pantaléon, P. A., Carrillo-Bastos, R. & Xian, Y. Topological magnon insulator with a Kekulé bond modulation. J. Phys.: Cond. Mat. 31, 085802 (2019).

52. Yan, B. Topological states on the gold surface. Nat. Commun. 6, 10167 (2015).

53. Morimoto, T., Po, H. C. & Vishwanath, A. Floquet topological phases protected by time glide symmetry. Phys. Rev. B 95, 195155 (2017).

54. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors. Chaps. 12 and 15 5th edn. (World Scientific, Singapore, 2009).

55. Berry, M. V. Aspects of degeneracy. In Chaotic Behavior in Quantum Systems. NATO ASI Series (Series B: Physics) Vol. 120 (ed. Casati, G.) 123–140 (Springer, Boston MA, 1985).

56. Su, W. P., Schrieffer, J. R. & Heeger, A. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980).

57. Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975).

58. Mclver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

59. Sato, S. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).

60. Novik, E. G. et al. Band structure of semimagnetic Hg1−y MnyTe quantum wells. Phys. Rev. B 72, 035321 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る