リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In vitro methods to ensure absence of residual undifferentiated human induced pluripotent stem cells intermingled in induced nephron progenitor cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In vitro methods to ensure absence of residual undifferentiated human induced pluripotent stem cells intermingled in induced nephron progenitor cells

Tsujimoto, Hiraku Katagiri, Naoko Ijiri, Yoshihiro Sasaki, Ben Kobayashi, Yoshifumi Mima, Akira Ryosaka, Makoto Furuyama, Kenichiro Kawaguchi, Yoshiya Osafune, Kenji 京都大学 DOI:10.1371/journal.pone.0275600

2022.11

概要

Cell therapies using human induced pluripotent stem cell (hiPSC)-derived nephron progenitor cells (NPCs) are expected to ameliorate acute kidney injury (AKI). However, using hiPSC-derived NPCs clinically is a challenge because hiPSCs themselves are tumorigenic. LIN28A, ESRG, CNMD and SFRP2 transcripts have been used as a marker of residual hiPSCs for a variety of cell types undergoing clinical trials. In this study, by reanalyzing public databases, we found a baseline expression of LIN28A, ESRG, CNMD and SFRP2 in hiPSC-derived NPCs and several other cell types, suggesting LIN28A, ESRG, CNMD and SFRP2 are not always reliable markers for iPSC detection. As an alternative, we discovered a lncRNA marker gene, MIR302CHG, among many known and unknown iPSC markers, as highly differentially expressed between hiPSCs and NPCs, by RNA sequencing and quantitative RT-PCR (qRT-PCR) analyses. Using MIR302CHG as an hiPSC marker, we constructed two assay methods, a combination of magnetic bead-based enrichment and qRT-PCR and digital droplet PCR alone, to detect a small number of residual hiPSCs in NPC populations. The use of these in vitro assays could contribute to patient safety in treatments using hiPSC-derived cells.

この論文で使われている画像

関連論文

参考文献

1. Harari-Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R, Pri-Chen S, et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med. 2013; 5: 1556–1568. https://doi.org/10.1002/emmm.201201584 PMID: 23996934

2. Toyohara T, Mae S-I, Sueta S-I, Inoue T, Yamagishi Y, Kawamoto T, et al. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med. 2015; 4: 980–992. https://doi.org/10.5966/sctm.2014-0219 PMID: 26198166

3. Hoshina A, Kawamoto T, Sueta S, Mae S, Araoka T, Tanaka H, et al. Development of new method to enrich human iPSC-derived renal progenitors using cell surface markers. Sci Rep. 2018; 8: 6375. https://doi.org/10.1038/s41598-018-24714-3 PMID: 29686294

4. Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep. 2015; 5: 8826. https://doi.org/10.1038/srep08826 PMID: 25744951

5. Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet (London, England). 2021. https://doi.org/10.1016/S0140-6736(21)00519-5

6. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009; 41: 1295–1302. https://doi.org/ 10.1038/ng.476 PMID: 19898483

7. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R. Identification of multipotent progeni- tors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006; 133: 151–61. https://doi.org/10.1242/dev.02174 PMID: 16319116

8. Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol. 2010; 21: 1218–1222. https://doi.org/10.1681/ASN.2009111156 PMID: 20558536

9. Berkowitz AL, Miller MB, Mir SA, Cagney D, Chavakula V, Guleria I, et al. Glioproliferative Lesion of the Spinal Cord as a Complication of “Stem-Cell Tourism.” N Engl J Med. 2016; 375: 196–198. https://doi. org/10.1056/NEJMc1600188 PMID: 27331440

10. Sato Y, Bando H, Di Piazza M, Gowing G, Herberts C, Jackman S, et al. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy. 2019; 21: 1095–1111. https://doi.org/10.1016/j.jcyt.2019.10.001 PMID: 31711733

11. Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, et al. Pre-clinical study of induced plu- ripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun. 2020; 11: 3369. https://doi.org/10.1038/s41467-020-17165-w PMID: 32632153

12. Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells- focus on Japan. FEBS J. 2021; febs.16162. https://doi.org/10.1111/febs.16162 PMID: 34407307

13. Kuroda T, Yasuda S, Kusakawa S, Hirata N, Kanda Y, Suzuki K, et al. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One. 2012;7. https://doi.org/10.1371/journal.pone.0037342 PMID: 22615985

14. Kuroda T, Yasuda S, Matsuyama S, Tano K, Kusakawa S, Sawa Y, et al. Highly sensitive droplet digital PCR method for detection of residual undifferentiated cells in cardiomyocytes derived from human plu- ripotent stem cells. Regen Ther. 2015; 2: 17–23. https://doi.org/10.1016/j.reth.2015.08.001 PMID: 31245455

15. Watanabe T, Yasuda S, Kusakawa S, Kuroda T, Futamura M, Ogawa M, et al. Multisite studies for vali- dation and improvement of a highly efficient culture assay for detection of undifferentiated human plurip- otent stem cells intermingled in cell therapy products. Cytotherapy. 2021; 23: 176–183. https://doi.org/ 10.1016/j.jcyt.2020.07.009 PMID: 32978066

16. Tano K, Yasuda S, Kuroda T, Saito H, Umezawa A, Sato Y. A novel in vitro method for detecting undif- ferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system. PLoS One. 2014;9. https://doi.org/10.1371/journal.pone.0110496 PMID: 25347300

17. Zhang Y, Feng G-H, Xu K, Wang L, Cui P, Li Y, et al. A non-invasive method to determine the pluripo- tent status of stem cells by culture medium microRNA expression detection. Sci Rep. 2016; 6: 22380. https://doi.org/10.1038/srep22380 PMID: 26927897

18. Tateno H, Onuma Y, Ito Y, Hiemori K, Aiki Y, Shimizu M, et al. A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells. Sci Rep. 2014; 4: 4069. https://doi.org/10.1038/srep04069 PMID: 24518842

19. Wang Z, Gagliardi M, Mohamadi RM, Ahmed SU, Labib M, Zhang L, et al. Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Sci Adv. 2020; 6: eaay7629. https://doi.org/10.1126/sciadv.aay7629 PMID: 32440533

20. Sekine K, Tsuzuki S, Yasui R, Kobayashi T, Ikeda K, Hamada Y, et al. Robust detection of undifferenti- ated iPSC among differentiated cells. Sci Rep. 2020; 10: 10293. https://doi.org/10.1038/s41598-020- 66845-6 PMID: 32581272

21. Roost MS, Van Iperen L, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, et al. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas. Stem Cell Reports. 2015; 4: 1112–1124. https://doi.org/10.1016/j.stemcr.2015.05.002 PMID: 26028532

22. Mahi N Al, Najafabadi MF, Pilarczyk M, Kouril M, Medvedovic M. GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-seq Data. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-43935-8 PMID: 31110304

23. Kotaka M, Toyoda T, Yasuda K, Kitano Y, Okada C, Ohta A, et al. Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived hepatoblasts into hepatocyte-like cells. Sci Rep. 2017; 7: 1–13. https://doi.org/10.1038/s41598-017-16858-5 PMID: 29196668

24. Kimura A, Toyoda T, Iwasaki M, Hirama R, Osafune K. Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells. Cell Chem Biol. 2020; 27: 1561-1572.e7. https://doi.org/10.1016/j.chembiol.2020.08.018 PMID: 33125912

25. Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab. 2019; 1–11. https://doi.org/10.1016/j.cmet. 2019.05.007 PMID: 31155493

26. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015; 526: 564–568. https:// doi.org/10.1038/nature15695 PMID: 26444236

27. Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, et al. The GUDMAP database— an online resource for genitourinary research. Development. 2011; 138: 2845–2853. https://doi.org/10. 1242/dev.063594 PMID: 21652655

28. Mae S-I, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 2013; 4: 1367. https://doi.org/10.1038/ncomms2378 PMID: 23340407

29. Tsujimoto H, Kasahara T, Sueta S ichi, Araoka T, Sakamoto S, Okada C, et al. A Modular Differentiation System Maps Multiple Human Kidney Lineages from Pluripotent Stem Cells. Cell Rep. 2020; 31: 107476. https://doi.org/10.1016/j.celrep.2020.03.040 PMID: 32268094

30. Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature. 2020; 580: 124–129. https://doi.org/10. 1038/s41586-020-2144-9 PMID: 32238941

31. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantifica- tion of transcript expression. Nat Methods. 2017; 14: 417–419. https://doi.org/10.1038/nmeth.4197 PMID: 28263959

32. Umekage M, Sato Y, Takasu N. Overview: an iPS cell stock at CiRA. Inflamm Regen. 2019; 39: 17. https://doi.org/10.1186/s41232-019-0106-0 PMID: 31497180

33. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13: 397–406. https://doi.org/10.1074/mcp.M113.035600 PMID: 24309898

34. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA- seq aligner. Bioinformatics. 2013; 29: 15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID: 23104886

35. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011; 8: 376–88. https://doi.org/10.1016/j.stem.2011.03.001 PMID: 21474102

36. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder- Free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014; 4: 3594. https://doi.org/10.1038/srep03594 PMID: 24399248

37. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007; 131: 861–872. https://doi.org/10. 1016/j.cell.2007.11.019 PMID: 18035408

38. Oceguera-Yanez F, Kim S Il, Matsumoto T, Tan GW, Xiang L, Hatani T, et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated deriva- tives. Methods. 2016; 101: 43–55. https://doi.org/10.1016/j.ymeth.2015.12.012 PMID: 26707206

39. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004; 270: 488–498. https://doi.org/10.1016/j.ydbio.2004.02.019 PMID: 15183728

40. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific microRNAs. Dev Cell. 2003; 5: 351–358. https://doi.org/10.1016/s1534-5807(03)00227-2 PMID: 12919684

41. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of Mouse and Human Cells to Pluripotency Using Mature MicroRNAs. Cell Stem Cell. 2011; 8: 633–638. https://doi. org/10.1016/j.stem.2011.05.001 PMID: 21620789

42. Natunen S, Satomaa T, Pitka¨ nen V, Salo H, Mikkola M, Natunen J, et al. The binding specificity of the marker antibodies Tra-1-60 and Tra-1-81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology. 2011; 21: 1125–1130. https://doi.org/10.1093/glycob/cwq209 PMID: 21159783

43. Fujitani N, Furukawa J ichi, Araki K, Fujioka T, Takegawa Y, Piao J, et al. Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. Proc Natl Acad Sci U S A. 2013; 110: 2105–2110. https://doi.org/10.1073/pnas.1214233110 PMID: 23345451

44. Tateno H. Stem cell glycomics: Structure, function, and application. Seikagaku. Japanese Biochemical Society; 2016. pp. 761–765. https://doi.org/10.14952/SEIKAGAKU.2016.880761

45. Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem. 2011; 286: 20345–20353. https://doi.org/10. 1074/jbc.M111.231274 PMID: 21471226

46. Tanosaki S, Tohyama S, Fujita J, Someya S, Hishiki T, Matsuura T, et al. Fatty Acid Synthesis Is Indis- pensable for Survival of Human Pluripotent Stem Cells. iScience. 2020;23. https://doi.org/10.1016/j.isci. 2020.101535 PMID: 33083764

47. Nakashima Y, Miyagi-Shiohira C, Noguchi H, Omasa T. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells. Mol Ther. 2018; 26: 1715–1734. https://doi.org/10.1016/j.ymthe.2018.06.005 PMID: 29929789

48. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to gen- erate integration-free human iPS cells. Nat Methods. 2011; 8: 409–412. https://doi.org/10.1038/nmeth. 1591 PMID: 21460823

49. Hanatani T, Takasu N. CiRA iPSC seed stocks (CiRA’s iPSC Stock Project). Stem Cell Res. 2021;50. https://doi.org/10.1016/j.scr.2020.102033 PMID: 33445065

50. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013; 31: 458–466. https://doi.org/10.1002/stem.1293 PMID: 23193063

51. Miyazaki T, Isobe T, Nakatsuji N, Suemori H. Efficient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Sci Rep. 2017; 7: 41165. https://doi.org/10. 1038/srep41165 PMID: 28134277

52. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281

53. Ge SX, Son EW, Yao R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19. https://doi.org/10.1186/s12859-018-2486-6 PMID: 30567491

54. Loh KM, Ang LT, Zhang J, Kumar V, Ang J, Auyeong JQ, et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell. 2014; 14: 237–252. https://doi.org/10.1016/j.stem.2013.12.007 PMID: 24412311

55. Cliff TS, Wu T, Boward BR, Yin A, Yin H, Glushka JN, et al. MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux. Cell Stem Cell. 2017; 21: 502-516.e9. https://doi. org/10.1016/j.stem.2017.08.018 PMID: 28965765

56. Chen J, Lin M, Foxe JJ, Pedrosa E, Hrabovsky A, Carroll R, et al. Transcriptome Comparison of Human Neurons Generated Using Induced Pluripotent Stem Cells Derived from Dental Pulp and Skin Fibro- blasts. Kerkis I, editor. PLoS One. 2013; 8: e75682. https://doi.org/10.1371/journal.pone.0075682 PMID: 24098394

57. Banovich NE, Li YI, Raj A, Ward MC, Greenside P, Calderon D, et al. Impact of regulatory variation across human iPSCs and differentiated cells. Genome Res. 2018; 28: 122–131. https://doi.org/10. 1101/gr.224436.117 PMID: 29208628

58. Zhao M-T, Chen H, Liu Q, Shao N-Y, Sayed N, Wo H-T, et al. Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci U S A. 2017; 114: E11111–E11120. https://doi.org/10.1073/pnas.1708991114 PMID: 29203658

59. Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir S, et al. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med. 2020; 24: 9853–9870. https://doi.org/10.1111/jcmm.15568 PMID: 32692488

60. Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, et al. Differentiation of Human Pluripo- tent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell. 2017; 21: 472-488.e10. https://doi.org/10.1016/j.stem.2017.08.014 PMID: 28965766

61. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multi- modal single-cell data. Cell. 2021; 184: 3573-3587.e29. https://doi.org/10.1016/j.cell.2021.04.048 PMID: 34062119

62. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using reg- ularized negative binomial regression. Genome Biol. 2019; 20: 296. https://doi.org/10.1186/s13059- 019-1874-1 PMID: 31870423

63. Ishida K, Xu H, Sasakawa N, Lung MSY, Kudryashev JA, Gee P, et al. Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells. Sci Rep. 2018; 8: 1–12. https://doi.org/10.1038/s41598-017-18568-4 PMID: 29321585

64. Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-020-14957-y PMID: 32170079

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る