リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease

Iwamoto, Yoshihiro Seki, Yohei Taya, Kahoru Tanaka, Masahiro Iriguchi, Shoichi Miyake, Yasuyuki Nakayama, Emi E. Miura, Tomoyuki Shioda, Tatsuo Akari, Hirofumi Takaori-Kondo, Akifumi Kaneko, Shin 京都大学 DOI:10.1016/j.omtm.2021.03.008

2021.06

概要

Because of their close biological similarity to humans, non-human primate (NHP) models are very useful for the development of induced pluripotent stem cell (iPSC)-based cell and regenerative organ transplantation therapies. However, knowledge on the establishment, differentiation, and genetic modification of NHP-iPSCs, especially rhesus macaque iPSCs, is limited. We succeeded in establishing iPSCs from the peripheral blood of rhesus macaques (Rh-iPSCs) by combining the Yamanaka reprograming factors and two inhibitors (GSK-3 inhibitor [CHIR 99021] and MEK1/2 inhibitor [PD0325901]) and differentiated the cells into functional macrophages through hematopoietic progenitor cells. To confirm feasibility of the Rh-iPSC-derived macrophages as a platform for bioassays to model diseases, we knocked out TRIM5 gene in Rh-iPSCs by CRISPR-Cas9, which is a species-specific HIV resistance factor. TRIM5 knockout (KO) iPSCs had the same differentiation potential to macrophages as did Rh-iPSCs, but the differentiated macrophages showed a gain of sensitivity to HIV infection in vitro. Our reprogramming, gene editing, and differentiation protocols used to obtain Rh-iPSC-derived macrophages can be applied to other gene mutations, expanding the number of NHP gene therapy models.

この論文で使われている画像

参考文献

17. Doxiadis, G.G., de Groot, N., Otting, N., de Vos-Rouweler, A.J., Bolijn, M.J.,

Heijmans, C.M., de Groot, N.G., van der Wiel, M.K., Remarque, E.J., Vangenot, C.,

et al. (2013). Haplotype diversity generated by ancient recombination-like events

in the MHC of Indian rhesus macaques. Immunogenetics 65, 569–584.

1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and

Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

18. Hansen, S.G., Wu, H.L., Burwitz, B.J., Hughes, C.M., Hammond, K.B., Ventura, A.B.,

Reed, J.S., Gilbride, R.M., Ainslie, E., Morrow, D.W., et al. (2016). Broadly targeted

CD8+ T cell responses restricted by major histocompatibility complex E. Science

351, 714–720.

2. Nishimura, T., Kaneko, S., Kawana-Tachikawa, A., Tajima, Y., Goto, H., Zhu, D.,

Nakayama-Hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., et al. (2013).

Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency

and redifferentiation. Cell Stem Cell 12, 114–126.

19. Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K.,

et al. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey

fibroblasts. Cell Stem Cell 3, 587–590.

3. Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S., Koseki, H., and

Kawamoto, H. (2013). Regeneration of human tumor antigen-specific T cells from

iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36.

4. Ando, M., Nishimura, T., Yamazaki, S., Yamaguchi, T., Kawana-Tachikawa, A.,

Hayama, T., Nakauchi, Y., Ando, J., Ota, Y., Takahashi, S., et al. (2015). A safeguard

system for induced pluripotent stem cell-derived rejuvenated T cell therapy. Stem

Cell Reports 5, 597–608.

5. Higaki, K., Hirao, M., Kawana-Tachikawa, A., Iriguchi, S., Kumagai, A., Ueda, N., Bo,

W., Kamibayashi, S., Watanabe, A., Nakauchi, H., et al. (2018). Generation of HIVresistant macrophages from IPSCs by using transcriptional gene silencing and promoter-targeted RNA. Mol. Ther. Nucleic Acids 12, 793–804.

6. Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., Ueda, T., Gee, P.,

Nishikawa, M., Nomura, M., et al. (2019). Targeted disruption of HLA genes via

CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem

Cell 24, 566–578.e7.

7. Minagawa, A., Yoshikawa, T., Yasukawa, M., Hotta, A., Kunitomo, M., Iriguchi, S.,

Takiguchi, M., Kassai, Y., Imai, E., Yasui, Y., et al. (2018). Enhancing T cell receptor

stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell 23, 850–858.e4.

8. Kang, H., Minder, P., Park, M.A., Mesquitta, W.T., Torbett, B.E., and Slukvin, I.I.

(2015). CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol. Ther.

Nucleic Acids 4, e268.

9. Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., Kiryu, J., and

Takahashi, M. (2014). Characterization of human induced pluripotent stem cellderived retinal pigment epithelium cell sheets aiming for clinical application. Stem

Cell Reports 2, 205–218.

10. Hallett, P.J., Deleidi, M., Astradsson, A., Smith, G.A., Cooper, O., Osborn, T.M.,

Sundberg, M., Moore, M.A., Perez-Torres, E., Brownell, A.L., et al. (2015).

Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell

16, 269–274.

11. Lin, Y., Liu, H., Klein, M., Ostrominski, J., Hong, S.G., Yada, R.C., Chen, G.,

Navarengom, K., Schwartzbeck, R., San, H., et al. (2018). Efficient differentiation of

cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci. Rep. 8, 5907.

20. Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., and Sodroski, J.

(2004). The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old

World monkeys. Nature 427, 848–853.

21. Nakayama, E.E., Miyoshi, H., Nagai, Y., and Shioda, T. (2005). A specific region of 37

amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5a

determines species-specific restriction of simian immunodeficiency virus SIVmac

infection. J. Virol. 79, 8870–8877.

22. Ganser-Pornillos, B.K., and Pornillos, O. (2019). Restriction of HIV-1 and other retroviruses by TRIM5. Nat. Rev. Microbiol. 17, 546–556.

23. Wang, X., Yu, Q., Yuan, Y., Teng, Z., Li, D., and Zeng, Y. (2017). Targeting the rhesus

macaque TRIM5a gene to enhance the susceptibility of CD4+ T cells to HIV-1 infection. Arch. Virol. 162, 793–798.

24. Hütter, G., Nowak, D., Mossner, M., Ganepola, S., Müssig, A., Allers, K., Schneider,

T., Hofmann, J., Kücherer, C., Blau, O., et al. (2009). Long-term control of HIV by

CCR5 delta32/delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698.

25. Gupta, R.K., Abdul-Jawad, S., McCoy, L.E., Mok, H.P., Peppa, D., Salgado, M.,

Martinez-Picado, J., Nijhuis, M., Wensing, A.M.J., Lee, H., et al. (2019). HIV-1 remission following CCR5D32/D32 haematopoietic stem-cell transplantation. Nature 568,

244–248.

26. Riolobos, L., Hirata, R.K., Turtle, C.J., Wang, P.-R., Gornalusse, G.G., Zavajlevski, M.,

Riddell, S.R., and Russell, D.W. (2013). HLA engineering of human pluripotent stem

cells. Mol. Ther. 21, 1232–1241.

27. Fang, R., Liu, K., Zhao, Y., Li, H., Zhu, D., Du, Y., Xiang, C., Li, X., Liu, H., Miao, Z.,

et al. (2014). Generation of naive induced pluripotent stem cells from rhesus monkey

fibroblasts. Cell Stem Cell 15, 488–497.

28. D’Souza, S.S., Maufort, J., Kumar, A., Zhang, J., Smuga-Otto, K., Thomson, J.A., and

Slukvin, I.I. (2016). GSK3b inhibition promotes efficient myeloid and lymphoid hematopoiesis from non-human primate-induced pluripotent stem cells. Stem Cell

Reports 6, 243–256.

29. Hong, S.G., Yada, R.C., Choi, K., Carpentier, A., Liang, T.J., Merling, R.K., Sweeney,

C.L., Malech, H.L., Jung, M., Corat, M.A.F., et al. (2017). Rhesus iPSC safe harbor

gene-editing platform for stable expression of transgenes in differentiated cells of

all germ layers. Mol. Ther. 25, 44–53.

30. Nishimura, K., Sano, M., Ohtaka, M., Furuta, B., Umemura, Y., Nakajima, Y., Ikehara,

Y., Kobayashi, T., Segawa, H., Takayasu, S., et al. (2011). Development of defective

and persistent Sendai virus vector: A unique gene delivery/expression system ideal

for cell reprogramming. J. Biol. Chem. 286, 4760–4771.

12. Hong, S.G., Winkler, T., Wu, C., Guo, V., Pittaluga, S., Nicolae, A., Donahue, R.E.,

Metzger, M.E., Price, S.D., Uchida, N., et al. (2014). Path to the clinic: Assessment

of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep. 7,

1298–1309.

31. Ying, Q.-L., Wray, J., Nicholas, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen,

P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal.

Nature 453, 519–523.

13. Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., Ogasawara, T.,

Okada, K., Shiba, N., Sakamoto, K., et al. (2016). Allogeneic transplantation of iPS

cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391.

32. Lengerke, C., Schmitt, S., Bowman, T.V., Jang, I.H., Maouche-Chretien, L.,

McKinney-Freeman, S., Davidson, A.J., Hammerschmidt, M., Rentzsch, F., Green,

J.B.A., et al. (2008). BMP and Wnt specify hematopoietic fate by activation of the

Cdx-Hox pathway. Cell Stem Cell 2, 72–82.

14. Hong, S.G., Lin, Y., Dunbar, C.E., and Zou, J. (2016). The role of nonhuman primate

animal models in the clinical development of pluripotent stem cell therapies. Mol.

Ther. 24, 1165–1169.

15. Estes, J.D., Wong, S.W., and Brenchley, J.M. (2018). Nonhuman primate models of

human viral infections. Nat. Rev. Immunol. 18, 390–404.

16. de Groot, N., Doxiadis, G.G., Otting, N., de Vos-Rouweler, A.J., and Bontrop, R.E.

(2014). Differential recombination dynamics within the MHC of macaque species.

Immunogenetics 66, 535–544.

272

33. Woods, N.B., Parker, A.S., Moraghebi, R., Lutz, M.K., Firth, A.L., Brennand, K.J.,

Berggren, W.T., Raya, A., Izpisúa Belmonte, J.C., Gage, F.H., and Verma, I.M.

(2011). Brief report: Efficient generation of hematopoietic precursors and progenitors

from human pluripotent stem cell lines. Stem Cells 29, 1158–1164.

34. Gori, J.L., Chandrasekaran, D., Kowalski, J.P., Adair, J.E., Beard, B.C., D’Souza, S.L.,

and Kiem, H.-P. (2012). Efficient generation, purification, and expansion of CD34+

hematopoietic progenitor cells from nonhuman primate-induced pluripotent stem

cells. Blood 120, e35–e44.

Molecular Therapy: Methods & Clinical Development Vol. 21 June 2021

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

www.moleculartherapy.org

35. Garneau, N.L., Wilusz, J., and Wilusz, C.J. (2007). The highways and byways of

mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126.

36. Lykke-Andersen, S., and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: An

intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665–677.

39. Abed, S., Tubsuwan, A., Chaichompoo, P., Park, I.H., Pailleret, A., Benyoucef, A.,

Tosca, L., De Dreuzy, E., Paulard, A., Granger-Locatelli, M., et al. (2015).

Transplantation of Macaca cynomolgus iPS-derived hematopoietic cells in NSG

immunodeficient mice. Haematologica 100, e428–e431.

37. Portilho, D.M., Fernandez, J., Ringeard, M., Machado, A.K., Boulay, A., Mayer, M.,

Müller-Trutwin, M., Beignon, A.S., Kirchhoff, F., Nisole, S., and Arhel, N.J. (2016).

Endogenous TRIM5a function is regulated by SUMOylation and nuclear sequestration for efficient innate sensing in dendritic cells. Cell Rep. 14, 355–369.

40. Katayama, M., Hirayama, T., Horie, K., Kiyono, T., Donai, K., Takeda, S., Nishimori,

K., and Fukuda, T. (2016). Induced pluripotent stem cells with six reprogramming

factors from prairie vole, which is an animal model for social behaviors. Cell

Transplant. 25, 783–796.

38. Taya, K., Nakayama, E.E., and Shioda, T. (2014). Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocytederived macrophages. PLoS ONE 9, e90969.

41. Katayama, M., Hirayama, T., Tani, T., Nishimori, K., Onuma, M., and Fukuda, T.

(2018). Chick derived induced pluripotent stem cells by the poly-cistronic transposon

with enhanced transcriptional activity. J. Cell. Physiol. 233, 990–1004.

Molecular Therapy: Methods & Clinical Development Vol. 21 June 2021

273

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る