リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Addressing H0 tension by means of VCDM」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Addressing H0 tension by means of VCDM

De Felice, Antonio Mukohyama, Shinji Pookkillath, Masroor C. 京都大学 DOI:10.1016/j.physletb.2021.136201

2021.05

概要

In this letter we propose a reduction of the H₀ tension puzzle by means of a theory of minimally modified gravity which is dubbed VCDM. After confronting the theory with the data, a transition in the expansion history of the universe in the low-redshift z ≃ 0.3 is found. From the bestfit values the total fitness parameter is improved by Δx² = 33.41 , for the data set considered. We then infer the local Hubble expansion rate today within this theory by means of low redshift Pantheon data. The resulting local Hubble expansion rate today is H₀[loc] = 73.69 ± 1.4. Hence the tension is reduced within the VCDM theory.

この論文で使われている画像

参考文献

we then need to find the residues on the variable

χ 2 = (m B ,i − mtB ,i )−

(m B , j − mtB , j )

ij

(1 Mpc) H 0

[1] Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, Dan Scolnic,

Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond

CDM, Astrophys. J. 876 (1) (2019) 85.

[2] Kenneth C. Wong, et al., H0LiCOW XIII. A 2.4% measurement of H 0 from lensed

quasars: 5.3σ tension between early and late-Universe probes, 7.2019.

[3] M.J. Reid, J.A. Braatz, J.J. Condon, L.J. Greenhill, C. Henkel, K.Y. Lo, The megamaser cosmology project: I. VLBI observations of UGC 3789, Astrophys. J. 695

(2009) 287–291.

[4] Wendy L. Freedman, et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red

Giant Branch, 7.2019.

[5] N. Aghanim, et al., Planck 2018 results. VI. Cosmological parameters, 7.2018.

[6] Jose Luis Bernal, Licia Verde, Adam G. Riess, The trouble with H 0 , J. Cosmol.

Astropart. Phys. 10 (2016) 019.

[7] Adam G. Riess, The expansion of the Universe is faster than expected, Nature

Rev. Phys. 2 (1) (2019) 10–12.

[8] Antonio De Felice, Andreas Doll, Shinji Mukohyama, A theory of type-II minimally modified gravity, J. Cosmol. Astropart. Phys. 09 (2020) 034.

[9] Andrew R. Liddle, Information criteria for astrophysical model selection, Mon.

Not. R. Astron. Soc. 377 (2007) L74–L78.

[10] N. Aghanim, et al., Planck 2018 results. V. CMB power spectra and likelihoods,

2019.

[11] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister StaveleySmith, Lachlan Campbell, Quentin Parker, Will Saunders, Fred Watson, The 6dF

galaxy survey: baryon acoustic oscillations and the local hubble constant, Mon.

Not. R. Astron. Soc. 416 (2011) 3017–3032.

[12] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden,

Marc Manera, The clustering of the SDSS DR7 main galaxy sample – I. A 4 per

cent distance measure at z = 0.15, Mon. Not. R. Astron. Soc. 449 (1) (2015)

835–847.

[13] Shadab Alam, et al., The clustering of galaxies in the completed SDSS-III baryon

oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. R. Astron. Soc. 470 (3) (2017) 2617–2652.

[14] D.M. Scolnic, et al., The complete light-curve sample of spectroscopically confirmed SNe ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample, Astrophys. J. 859 (2) (2018) 101.

[15] David Camarena, Valerio Marra, Local determination of the Hubble constant

and the deceleration parameter, Phys. Rev. Res. 2 (1) (2020) 013028.

[16] Giampaolo Benevento, Wayne Hu, Marco Raveri, Can late dark energy transitions raise the Hubble constant?, Phys. Rev. D 101 (10) (2020) 103517.

[17] N. Aghanim, et al., Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological

parameters, Astron. Astrophys. 607 (2017) A95.

[18] Pavel Motloch, Wayne Hu, Lensinglike tensions in the Planck legacy release,

Phys. Rev. D 101 (8) (2020) 083515.

[19] Diego Blas, Julien Lesgourgues, Thomas Tram, The cosmic linear anisotropy

solving system (CLASS) II: approximation schemes, J. Cosmol. Astropart. Phys.

1107 (2011) 034.

[20] Masroor C. Pookkillath, Antonio De Felice, Shinji Mukohyama, Baryon physics

and tight coupling approximation in Boltzmann codes, Universe 6 (2020) 6.

[21] Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet, Conservative constraints on early cosmology: an illustration of the Monte python

cosmological parameter inference code, J. Cosmol. Astropart. Phys. 1302 (2013)

001.

[22] Thejs Brinckmann, Julien Lesgourgues, MontePython 3: boosted MCMC sampler

and other features, Phys. Dark Universe 24 (2019) 100260.

[23] Antony Lewis, GetDist: a Python package for analysing Monte Carlo samples,

10.2019.

[24] Balakrishna S. Haridasu, Matteo Viel, Nicola Vittorio, Sources of H 0 -tensions in

dark energy scenarios, 12.2020.

[25] Adam G. Riess, Stefano Casertano, Wenlong Yuan, J. Bradley Bowers, Lucas

Macri, Joel C. Zinn, Dan Scolnic, Cosmic Distances Calibrated to 1% Precision

with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky

Way Cepheids Confirm Tension with LambdaCDM, 12.2020.

[26] Ryan E. Keeley, Shahab Joudaki, Manoj Kaplinghat, David Kirkby, Implications

of a transition in the dark energy equation of state for the H 0 and σ8 tensions,

J. Cosmol. Astropart. Phys. 12 (2019) 035.

[27] Kyriakos Vattis, Savvas M. Koushiappas, Abraham Loeb, Dark matter decaying

in the late Universe can relieve the H0 tension, Phys. Rev. D 99 (12) (2019)

121302.

[28] Gongjun Choi, Motoo Suzuki, Tsutomu T. Yanagida, Quintessence axion dark

energy and a solution to the Hubble tension, Phys. Lett. B 805 (2020) 135408.



= W i − M B + 5 log10

−

ij



(1 Mpc) H 0

W j − M B + 5 log10

(A.6)

Now consider

d¯ L ≡ (1 + z)

z

dz

E ( z )

(A.7)

so that

d¯ L =

dz d¯ L

dN dz

= d¯ L +

(1 + z)2

E ( z)

(A.8)

where we have used

dz

dN

= 1+ z,

(A.9)

considering N = ln(a0 /a) = ln(1 + z). Now we can solve for d¯ L ( z),

given the initial conditions d¯ L (0) = 0 = z(0).

Once we have the quantities d¯ L for any data-redshift, we have

W i so that we are able to find

S 0 ≡ V T − 1 V ,

S1 ≡ W 

−1

(A.10)

V,

(A.11)

where V i = 1 and i j is the covariance matrix.

Finally, the mean value and the variance of H 0loc can be determined by the log-normal distribution

H 0loc = e μln + 2 σln ,

H 0loc

(A.12) ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る