リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「NEAT1 is Required for the Expression of the Liver Cancer Stem Cell Marker CD44」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

NEAT1 is Required for the Expression of the Liver Cancer Stem Cell Marker CD44

Koyama, Shigemi Tsuchiya, Hiroyuki Amisaki, Masataka Sakaguchi, Hiromi Honjo, Soichiro Fujiwara, Yoshiyuki Shiota, Goshi 鳥取大学 DOI:10.3390/ijms21061927

2020.03

概要

CD44, a cancer stem cell (CSC) marker, is required for maintaining CSC properties in hepatocellular carcinoma (HCC). Nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), is an oncogenic driver in HCC. In the present study, we investigated the significance of the NEAT1 gene in association with CD44 expression in liver CSCs of human HCC cell lines. The CSC properties were evaluated by spheroid culture, CSC marker expression, and sensitivity to anti-cancer drugs. The expression of both NEAT1 variant 1 (NEAT1v1) and variant 2 (NEAT1v2) as well as CD44 was significantly increased in the spheroid culture, compared with that in monolayer culture. Overexpression of Neat1v1, but not Neat1v2, enhanced the CSC properties, while knockout of the NEAT1 gene suppressed them. CD44 expression was increased by the overexpression of Neat1v1 and abrogated by NEAT1 knockout. The overexpression of NEAT1v1 restored the CSC properties and CD44 expression in NEAT1-knockout cells. NEAT1v1 expression in HCC tissues was correlated with poor prognosis and CD44 expression. These results suggest that NEAT1v1 is required for CD44 expression. To our surprise, NEAT1v1 also restored the CSC properties even in CD44-deficient cells, suggesting that NEAT1v1 maintains the properties of CSCs in a CD44-independent manner.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA

Cancer J. Clin. 2015, 65, 87–108, doi:10.3322/caac.21262.

Notake, T.; Kobayashi, A.; Shinkawa, H.; Kawahara, T.; Shimizu, A.; Yokoyama, T.; Hasegawa, K.; Kokudo,

N.; Matsuyama, Y.; Makuuchi, M.; et al. Nomogram predicting long-term survival after the diagnosis of

intrahepatic recurrence of hepatocellular carcinoma following an initial liver resection. Int. J. Clin. Oncol.

2017, 22, 715–725, doi:10.1007/s10147-017-1114-1.

Shindoh, J.; Makuuchi, M.; Matsuyama, Y.; Mise, Y.; Arita, J.; Sakamoto, Y.; Hasegawa, K.; Kokudo, N.

Complete removal of the tumor-bearing portal territory decreases local tumor recurrence and improves

disease-specific survival of patients with hepatocellular carcinoma. J. Hepatol. 2016, 64, 594–600,

doi:10.1016/j.jhep.2015.10.015.

Gao, W.; Chen, L.; Ma, Z.; Du, Z.; Zhao, Z.; Hu, Z.; Li, Q. Isolation and phenotypic characterization of

colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology 2013, 145, 636–646,

doi:10.1053/j.gastro.2013.05.049.

Ayob, A.Z.; Ramasamy, T.S. liver stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018, 25,

20, doi:10.1186/s12929-018-0426-4.

Vlashi, E.; Lagadec, C.; Vergnes, L.; Matsutani, T.; Masui, K.; Poulou, M.; Popescu, R.; Della Donna, L.;

Evers, P.; Dekmezian, C.; et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl.

Acad. Sci. U. S. A. 2011, 108, 16062–16067, doi:10.1073/pnas.1106704108.

Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a

primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737, doi:10.1038/nm0797-730.

Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.;

Dirks, P.B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401,

doi:10.1038/nature03128.

Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of

tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3983–3988,

doi:10.1073/pnas.0530291100.

Int. J. Mol. Sci. 2020, 21, 1927

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

16 of 18

Kim, C.F.; Jackson, E.L.; Woolfenden, A.E.; Lawrence, S.; Babar.; I.; Vogel, S.; Crowley, D.; Bronson, R.T.;

Jacks, T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121, 823–

835, doi:10.1016/j.cell.2005.03.032.

O'Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour

growth in immunodeficient mice. Nature 2007, 445, 106–110, doi:10.1038/nature05372.

Yamashita, T.; Ji, J.; Budhu, A.; Forgues, M.; Yang, W.; Wang, H.Y.; Jia, H.; Ye, Q.; Qin, L.X.; Wauthier, E.;

et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell

features. Gastroenterology 2009, 136, 1012–1024, doi:10.1053/j.gastro.2008.12.004.

Ma, S.; Chan, K.W.; Hu, L.; Lee, T.K.; Wo, J.Y.; Ng, I.O.; Zheng, B.J.; Guan, X.Y. Identification and

characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007, 132, 2542–2556,

doi:10.1053/j.gastro.2007.04.025.

Zhu, Z.; Hao, X.; Yan, M.; Yao, M.; Ge, C.; Gu, J.; Li, J. Cancer stem/progenitor cells are highly enriched in

CD133+CD44+ population in hepatocellular carcinoma. Int. J. Cancer. 2010, 126, 2067–2078,

doi:10.1002/ijc.24868.

Zöller, M. CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev.

Cancer 2011, 11, 254–267, doi:10.1038/nrc3023.

Yan, Y.; Zuo, X.; Wei, D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising

Biomarker and Therapeutic Target. Stem Cells Transl. Med. 2015, 4, 1033–1043, doi:10.5966/sctm.2015-0048.

Sakabe, T.; Azumi, J.; Umekita, Y.; Toriguchi, K.; Hatano, E.; Hirooka, Y.; Shiota, G. Prognostic relevance

of miR-137 in patients with hepatocellular carcinoma. Liver Int. 2017, 37, 271–279, doi:10.1111/liv.132.

Asai, R.; Tsuchiya, H.; Amisaki, M.; Makimoto, K.; Takenaga, A.; Sakabe, T.; Hoi, S.; Koyama, S.; Shiota, G.

CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell

line. Cancer Med. 2019, 8, 773–782, doi:10.1002/cam4.1968.

Nakagawa, S.; Naganuma, T.; Shioi, G.; Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies

that are not essential in mice. J. Cell Biol. 2011, 193, 31–39, doi:10.1083/jcb.201011110.

Imamura, K.; Imamachi, N.; Akizuki, G.; Kumakura, M.; Kawaguchi, A.; Nagata, K.; Kato, A.; Kawaguchi,

Y.; Sato, H.; Yoneda, M.; et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter

region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 2014, 53, 393–406,

doi:10.1016/j.molcel.2014.01.009.

Adriaens, C.; Standaert, L.; Barra, J.; Latil, M.; Verfaillie, A.; Kalev, P.; Boeckx, B.; Wijnhoven, P.W.; Radaelli,

E.; Vermi, W.; et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate

replication stress response and chemosensitivity. Nat. Med. 2016, 22, 861–868, doi:10.1038/nm.4135.

Yang, X.; Qu, S.; Wang, L.; Zhang, H.; Yang, Z.; Wang, J.; Dai, B.; Tao, K.; Shang, R.; Liu, Z.; et al. PTBP3

splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and premiR-612. Oncogene 2018, 37, 6399–6413, doi:10.1038/s41388-018-0416-8.

Li, W.; Zhang, Z.; Liu, X.; Cheng, X.; Zhang, Y.; Han, X.; Zhang, Y.; Liu, S.; Yang, J.; Xu, B.; et al. The FOXN3NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J. Clin.

Invest. 2017, 127, 3421–3440, doi:10.1172/JCI94233.

Mello, S.S.; Sinow, C.; Raj, N.; Mazur, P.K.; Bieging-Rolett, K.; Broz, D.K.; Imam, J.F.C.; Vogel, H.; Wood,

LD.; Sage, J.; Hirose, T.; et al. Neat1 is a p53-inducible lincRNA essential for transformation suppression.

Genes Dev. 2017, 31, 1095–1108, doi:10.1101/gad.284661.116.

Fujimoto, A.; Furuta, M.; Totoki, Y.; Tsunoda, T.; Kato, M.; Shiraishi, Y.; Tanaka, H.; Taniguchi, H.;

Kawakami, Y.; Ueno, M.; et al. Whole-genome mutational landscape and characterization of noncoding

and structural mutations in liver cancer. Nat. Genet. 2016, 48, 500–509, doi:10.1038/ng.3547.

Cao, L.; Zhou, Y.; Zhai, B.; Liao, J.; Xu, W.; Zhang, R.; Li, J.; Zhang, Y.; Chen, L.; Qian, H.; et al. Sphereforming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC

Gastroenterol. 2011, 11, 71, doi:10.1186/1471-230X-11-71.

Ma, X.L.; Sun, Y.F.; Wang, B.L.; Shen, M.N.; Zhou, Y.; Chen, J.W.; Hu, B.; Gong, Z.J.; Zhang, X.; Cao, Y.; et

al. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a

potential therapeutic target. BMC Cancer 2019, 19, 760, doi:10.1186/s12885-019-5963-z.

Lin, Y.; Schmidt, B.F.; Bruchez, M.P.; McManus, C.J. Structural analyses of NEAT1 lncRNAs suggest longrange RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 2018, 46, 3742–

3752, doi:10.1093/nar/gky046.

Int. J. Mol. Sci. 2020, 21, 1927

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

17 of 18

Valent, P.; Bonnet, D.; De Maria, R.; Lapidot, T.; Copland, M.; Melo, J.V.; Chomienne, C.; Ishikawa, F.;

Schuringa, J.J.; Stassi, G.; et al. Cancer stem cell definitions and terminology: The devil is in the details. Nat.

Rev. Cancer 2012, 12, 767–775, doi:10.1038/nrc3368.

Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J.D. Targeting Cancer Stemness in the Clinic: From Hype

to Hope. Cell Stem Cell 2019, 24, 25–40, doi:10.1016/j.stem.2018.11.017.

Hou, Y.; Zou, Q.; Ge, R.; Shen, F.; Wang, Y. The critical role of CD133+CD44+/high tumor cells in

hematogenous metastasis of liver cancers. Cell Res. 2012, 22, 259–272, doi:10.1038/cr.2011.139.

Ponta, H.; Sherman, L.; Herrlich, P.A. CD44: From adhesion molecules to signalling regulators. Nat. Rev.

Mol. Cell Biol. 2003, 4, 33–45, doi:10.1038/nrm1004.

Hu, Y.; Wang, J.; Qian, J.; Kong, X.; Tang, J.; Wang, Y.; Chen, H.; Hong, J.; Zou, W.; Chen, Y.; et al. Long

noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor

prognosis of gastric cancer. Cancer Res. 2014, 74, 6890–6902, doi:10.1158/0008-5472.CAN-14-0686.

Smith, S.M.; Lyu, Y.L.; Cai, L. NF-κB affects proliferation and invasiveness of breast cancer cells by

regulating CD44 expression. PLoS ONE 2014, 9, e106966, doi:10.1371/journal.pone.0106966.

Zhang, C.; Xu, Y.; Hao, Q.; Wang, S.; Li, H.; Li, J.; Gao, Y.; Li, M.; Li, W.; Xue, X.; et al. FOXP3 suppresses

breast cancer metastasis through downregulation of CD44. Int. J. Cancer. 2015, 137, 1279–1290,

doi:10.1002/ijc.29482.

Wei, B.; Sun, X.; Geng, Z.; Shi, M.; Chen, Z.; Chen, L.; Wang, Y.; Fu, X. Isoproterenol regulates CD44

expression in gastric cancer cells through STAT3/MicroRNA373 cascade. Biomaterials 2016, 105, 89–101,

doi:10.1016/j.biomaterials.2016.07.040.

Rimkus, T.K.; Carpenter, R.L.; Sirkisoon, S.; Zhu, D.; Pasche, B.C.; Chan, M.D.; Lesser, G.J.; Tatter, S.B.;

Watabe, K.; Debinski, W.; et al. Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates

Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res. 2018, 78, 2589–2600,

doi:10.1158/0008-5472.CAN-17-2933.

Fang, L.; Sun, J.; Pan, Z.; Song, Y.; Zhong, L.; Zhang, Y.; Liu, Y.; Zheng, X.; Huang, P. Long non-coding

RNA NEAT1 promotes hepatocellular carcinoma cell proliferation through the regulation of miR-129-5pVCP-IκB. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G150–G156, doi:10.1152/ajpgi.00426.2016.

Wang, Z.; Zou, Q.; Song, M.; Chen, J. NEAT1 promotes cell proliferation and invasion in hepatocellular

carcinoma by negative regulating miR-613 expression. Biomed. Pharmacother. 2017, 94, 612–618,

doi:10.1016/j.biopha.2017.07.111.

Liu, X.; Liang, Y.; Song, R.; Yang, G.; Han, J.; Lan.; Y.; Pan, S.; Zhu, M.; Liu.; Y.; Wang, Y.; Meng, F.; Cui, Y.;

et al. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular

carcinoma proliferation. Mol. Cancer 2018, 17, 90, doi:10.1186/s12943-018-0838-5.

Yu, H.M.; Wang, C.; Yuan, Z.; Chen, G.L.; Ye, T.; Yang, B.W. LncRNA NEAT1 promotes the tumorigenesis

of colorectal cancer by sponging miR-193a-3p. Cell Prolif. 2019, 52, e12526, doi:10.1111/cpr.12526.

Chen, X.; Zhang, N. Downregulation of lncRNA NEAT1_2 radiosensitizes hepatocellular carcinoma cells

through regulation of miR-101-3p/WEE1 axis. Cell Biol. Int. 2019, 43, 44–55, doi:10.1002/cbin.11077.

Idogawa, M.; Ohashi, T.; Sasaki, Y.; Nakase, H.; Tokino, T. Long non-coding RNA NEAT1 is a

transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function.

Int. J. Cancer 2017, 140, 2785–2791, doi:10.1002/ijc.30689.

Zhu, J.; Huang, G.; Hua, X.; Li, Y.; Yan, H.; Che, X.; Tian, Z.; Liufu, H.; Huang, C.; Li, J.; et al. CD44s is a

crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human

bladder cancer (BC) cells. Oncogene 2019, 38, 3301–3315, doi:10.1038/s41388-018-0664-7.

Han, H.; Sun, D.; Li, W.; Shen, H.; Zhu, Y.; Li, C.; Chen, Y.; Lu, L.; Li, W.; Zhang, J.; et al.. A c-MycMicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 2013, 57, 2378–2389,

doi:10.1002/hep.26302.

Idogawa, M.; Nakase, H.; Sasaki, Y.; Tokino, T. Prognostic Effect of Long Noncoding RNA NEAT1

Expression Depends on p53 Mutation Status in Cancer. J. Oncol. 2019, 2019, 4368068,

doi:10.1155/2019/4368068.

Li, R.; Harvey, A.R.; Hodgetts, S.I.; Fox, A.H. Functional dissection of NEAT1 using genome editing reveals

substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA 2017, 23, 872–881,

doi:10.1261/rna.059477.116.

Int. J. Mol. Sci. 2020, 21, 1927

48.

49.

50.

51.

18 of 18

Sasaki, Y.T.; Ideue, T.; Sano, M.; Mituyama, T.; Hirose, T. MENepsilon/beta noncoding RNAs are essential

for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 2525–2530,

doi:10.1073/pnas.0807899106.

Derti, A.; Garrett-Engele, P.; Macisaac, K.D.; Stevens, R.C.; Sriram, S.; Chen, R.; Rohl, C.A.; Johnson, J.M.;

Babak, T. A quantitative atlas of polyadenylation in five mammals. Genome Res. 2012, 22, 1173–1183,

doi:10.1101/gr.132563.111.

Clemson, C.M.; Hutchinson, J.N.; Sara, S.A.; Ensminger, A.W.; Fox, A.H.; Chess, A.; Lawrence, J.B. An

architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles.

Mol. Cell 2009, 33, 717–726, doi:10.1016/j.molcel.2009.01.026.

Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPRCas9 system. Nat. Protoc. 2013, 8, 2281–2308, doi:10.1038/nprot.2013.143.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Table S1. Clinical characteristics of HCC patients.

Number of patients

Age (y)

Gender (male / female)

Etiology (HBV / HCV / nonB·nonC)

Child-Pugh score (5 / 6 / ≥7)

Number of tumors (1 / ≥ 2)

Tumor size (cm)

TNM stage (IA / IB / II / IIIA / IIIB / IVA)

Survival period (y)

† mean ± standard deviation

§ median [interquartile range]

92

67.2 ± 10.7†

79 / 13

40 / 23 / 29

67 / 19 / 6

80 / 13

5.3 ± 4.1†

8 / 30 / 38 / 7 / 7 / 2

4.2 [2.8 - 7.3]§

Table S2. OligoDNAs used in the present study

Reverse transcription primers

hNEAT1v1-specific oligo(dT) primer (hV1-dT13)

mNeat1v1-specific oligo(dT) primer (mV1-dT14)

random nanomer ligoDNA primer

TTTTTTTTTTTTTTCTAATG

TTTTTTTTTTTTTTGAAGCT

NNNNNNNNN

(N: A, G, C, T)

qPCR primers

human

β-actin

CD133

CD44

EPCAM

HPRT1

total NEAT1

NEAT1v2

NOTCH3

mouse

total Neat1

Neat1v2

sense

antisense

GATGCAGAAGGAGATCACTGC

AATTCACCAGCAACGAGTCC

AAGGTGGAGCAAACACAACC

ATAACCTGCTCTGAGCGAGTG

TGGCGTCGTGATTAGTGATG

TGCCACAACGCAGATTGATG

AGGGTTCTGTTGCTAACACG

AGCCATGCTGATGTCAATGC

TGATCCACATCTGCTGGAAG

AATCCATTCCCTGTGCGTTG

TCGACTGTTGACTGCAATGC

AACGCGTTGTGATCTCCTTC

ATCTCGAGCAAGACGTTCAG

ACAAGAAGGCAGGCAAACAG

TGCCGATGAAGCAACAAAGC

TTTTGAGCAGGGCCAAAGTG

AGCAGGCACCCTTTTTCATG

ATCAGGTTTGGCAGCCAATG

TGCGCAGACGTTAAAGTGTC

CAGGCAACAAAAGCAAACGC

AflII-linker oligoDNA

Up

TTAACGCCAGTCGGATCCAGCGAT

Down

TTAAATCGCTGGATCCGACTGGCG

psgNEAT1a/b construction

sgNEAT1a

sgNEAT1b

Up

CACCgTCCCTCCCTGTCGCTAACTC

CACCgACAGGGAGGGATGCGCGCCT

Down

AAACGAGTTAGCGACAGGGAGGGAc

AAACAGGCGCGCATCCCTCCCTGTc

pTarget-hNEAT1 construction

5'-homology arm

3'-homology arm

Forward

gcagcttaagTGTCCCTCGGCTATGTCAGA

gtcgtctagaTGGGTGTAGTTGTGGGGGAG

Reverse

ggtcccgcggCGCTAACTCCGGCTGGACTT

ccagctcgagCACATTCACTCCCCACCCTC

NEAT1 knock-in check primers

5'-knock-in

3'-knock-in

Forward

AGACTGATGGGGCAGATCCT

AGGGGATCCGCTGTAAGTCT

Reverse

CCATGTTATCCTCCTCGCCC

ACCACGGTCCATGAAGCATT

Spheroids

monolayer

HuH7

HepG2

HLE

HLF

HuH6

PLC/PRF/5

100 µm

Figure S1 Spheroid culture of HCC cell lines. A, Representative images of spheroids of HCC cell lines.

(Figure S1, continue)

total hNEAT1

PLC/PRF/5

HuH6

HLF

HLE

16

12

10

HuH6

PLC/PRF/5

HLF

HLE

PLC/PRF/5

HepG2

HuH6

HuH7

HLF

HLE

PLC/PRF/5

HuH6

14

HLF

EPCAM

18

HLE

CD133

HepG2

HuH7

CD44

100

HepG2

HuH7

HuH6

HLE

HepG2

HuH7

PLC/PRF/5

HLF

relative mRNA levels / HPRT1

monolayer culture

spheroid culture

90

80

70

60

50

40

30

20

10

HepG2

10

NEAT1v2

HuH7

relative mRNA levels / HPRT1

12

(Figure S1, continue) B, mRNA expression levels of CSC markers relative to HPRT1 in monolayer cells (blue

columns) and in spheroids (orange columns) (n = 3). The data are the same as those shown in Figure 1, but without

normalization to the expression levels in the monolayer cells.

mouse Neat1 (GRCm38/mm10: chr19: 5,824,708 – 5,845,480)

3.2 kb

mNeat1v1 (NR_003513)

mNeat1v2 (NR_131212)

20.8 kb

human NEAT1 (GRCh38/hg38: chr11: 65,422,798 – 65,445,540)

3.8 kb

hNEAT1v1 (NR_028272)

hNEAT1v2 (NR_131012)

22.7 kb

percent identity (hNEAT1/mNeat1)

Alignment tools

variant 1

variant 2

BLASTN

69%

69%

MAFFT

65.3%

55.6%

Kalign

64.4%

53.8%

Clustal Omega

55.2%

55.5%

mouse Neat1

mNeat1v1

mNeat1v2

v1 v2

mNeat1

HuH7

v1 v2

mNeat1

HepG2

1.0

0.8

CTRL (C)

mNeat1v1

mNeat1v2

0.2

v1 v2

mNeat1

HuH7

< 0.001

0.4

< 0.001

0.6

< 0.001

< 0.001

1.0

mRNA/β-actin

1.5

< 0.001

mRNA/β-actin

2.0

0.5

v2 primers

1.2

< 0.001

total primers

2.5

v1 v2

mNeat1

HepG2

Figure S2 Establishment of HCC cell lines expressing mouse Neat1 variant 1 (mNeat1v1) and Neat1 variant 2

(mNeat1v2). A, Genomic structure of mouse (upper) and human (lower) NEAT1. Identity of the mouse and human

NEAT1 gene is summarized in the table. hNEAT1v1, human NEAT1 variant 1; hNEAT1v2, human NEAT1 variant

2. B, The expression levels of mNeat1 in HCC cells stably transfected with mock (open columns), mNeat1v1 (gray

columns) or mNeat1v2 (black columns) plasmids. Total primers (left) amplify both mNeat1v1 and mNeat1v2, while

v2 primers (right) amplify only mNeat1v2. Their locations are shown. (n = 4).

(Figure S2, continue)

mouse Neat1

AAAAA....

mNeat1v1 RNA

mNeat1v2 RNA

(no polyA tail)

total primers

v2 primers

RT primers:

mV1-dT14 (mNeat1v1-specific oligo(dT) primer)

N9 (random N9 oligoDNA primer)

HuH7

6.0

4.0

2.0

0.0

1.5

3.0

2.0

1.0

0.0

0.5

0.0

1.0

1.0

0.8

0.8

RT–/RT+

RT–/RT+

mV1-dT14

mNeat1v2

(v2 primers)

0.6

0.4

0.6

0.4

0.2

0.0

0.0

N9

mV1-dT14

N9

mV1-dT14

N9

mV1-dT14

1.0

RT–/RT+

1.0

RT–/RT+

N9

0.5

mV1-dT14

0.2

HepG2

mV1-dT14

1.0

total mNeat1

(total primers)

HuH7

N9

1.5

0.0

N9

RT–

overexpressing cells

CTRL (C)

mNeat1v1

mNeat1v2

1.0

mV1-dT14

mRNA/β-actin (N9)

mRNA/β-actin (N9)

N9

HepG2

mNeat1v2

(v2 primers)

mRNA/β-actin (N9)

RT+

mRNA/β-actin (N9)

total mNeat1

(total primers)

TTTTTTTTTTTTTTGAAGCT

NNNNNNNNN

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.0

0.0

N9

mV1-dT14

(Figure S2, continue) C, The expression levels of mNeat1v1 in stably transfected with mock (open columns),

mNeat1v1 (gray columns) or mNeat1v2 (black columns) plasmids. Following DNase treatment, the total RNA were

reverse-transcribed with mNeat1v1-specific oligo(dT) (mV1-dT14) or random N9 oligoDNA (N9) primers by

ReverTra Ace (TOYOBO, Japan) (RT+). The data sown as RT+ were normalized by the expression levels of β-actin

that was reverse-transcribed by the N9 primer. RT–; total RNA incubated in the same reaction mixture without ReverTra Ace. The ratio of RT– to RT+ was shown to indicate the negligible contamination of genomic DNA. (n = 4).

Figure S3 Establishment of NEAT1-KO HCC cell lines. We used two different sgRNAs (sgNEATa and sgNEATb),

which were designed to target sites proximal to the transcription start site of the NEAT1 gene. Genomic DNA PCR

with primers indicated in this figure demonstrated that both alleles were deleted in HuH7 clone #4 obtained by

sgNEATa and clone #10 obtained by sgNEAT1b, and HepG2 clone #4 obtained by sgNEATb. HepG2 clone #1 had

single allele deletion.

Figure S4 Involvement of P21CDKN1A in spheroid formation of HCC cell lines. A, P21CDKN1A expression in HCC cell

lines expressing mNeat1v1 (v1) and mNeat1v 2 (v2). B, P21CDKN1A expression in NEAT1-KO HCC cell lines. C,

Confirmation of P21CDKN1A knockdown in HCC cell lines. GAPDH was used as an internal control. D, Spheroid

formation ability of HCC cell lines transfected with a negative control siRNA (siNC) or siRNAs targeting P21CDKN1A

(si1 and si2). *P < 0.05 vs. siNC; Dunnett’s test (n = 4).

Figure S5 Cell cycle analysis of NEAT1-KO HCC cell lines. A, Representative histograms of flow cytometry

analysis of NEAT1-KO cell lines.

(Figure S5, continue) B, The cell cycle fraction of NEAT1-KO HCC cell lines. (n = 4–5)

Figure S6 Relationship between NEAT1 expression and prognosis in HCC patients. A, (left) total NEAT1 and

NEAT1v2 expression levels in HCC tumor (T) or non-tumor liver (NT) tissues. Bars indicate average. P values were

calculated by Student’s paired t-test. (right) Regression analysis between total NEAT1 and NEAT1v2 expression in

tumor tissues. Patients above the regression line were considered as total NEAT1 dominant (NEAT1v1 dominant),

while the others were NEAT1v2 dominant. B–D, Overall survival (left) and recurrence-free survival (right) rates of

all HCC patients (B), NEAT1v1 dominant patients (C), and NEAT1v2 dominant patients (D) stratified according to

the median values of total NEAT1 or NEAT1v2 expression. P values were determined by Gehan’s Wilcoxon test.

Figure S7 Correlation between CD44 and NEAT1 expression in HCC tumor tissues. A–C, Regression plots between

NEAT1 total and NEAT1v2 (left), between NEAT1 total and CD44 (middle), and between NEAT1v2 and CD44 (left)

in all HCC patients (A), NEAT1v1 dominant patients (B), or NEAT1v2 dominant patients (C) stratified according to

median values of NEAT1 total or NEAT1v2 expression. P values were determined by Spearman’s rank correlation

test.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る