リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transport of solute and solvent driven by lubrication pressure through non-deformable permeable membranes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transport of solute and solvent driven by lubrication pressure through non-deformable permeable membranes

Yamada, Shuji 大阪大学

2021.10

概要

A discrete-forcing immersed boundary method with permeable membranes is developed to investigate the effect of lubrication on the permeations of solute and solvent through membrane. The permeation models are incorporated into the discretisation at the fluid cells including the membrane, and discretised equations for the pressure Poisson equation and convection-diffusion equation for the solute are represented with the discontinuities at the membrane. The validity of the proposed method is established by the convergence of the numerical results of the permeate fluxes (solute and solvent) to higher-order analytical models in a lubrication-dominated flow field. As a model of the mass exchange between inside and outside of a biolog- ical cell flowing in a capillary, a circular membrane is placed between parallel flat plates, and the effect of lubrication is investigated by varying the distance between the membrane and the walls. The pressure dis- continuity near the wall is larger than that at the stagnation point, which is a highlighted effect of lubrication. In the case of a small gap, the solute transport is dominated by convection inside the circular membrane and by diffusion outside. Through the time variation of the concentration in the circular membrane, lubrication is shown to enhance mass transport from/to inside and outside the membrane.

この論文で使われている画像

参考文献

Cannon, P.J., Hassar, M., Case, D.B., Casarella, W.J., Sommers, S.C., LeRoy, E.C.: The relationship of hypertension and renal failure in scleroderma (progressive systemic sclerosis) to structural and functional abnormalities of the renal cortical circulation. Medicine 53, No. 1, pp. 1-46 (1974)https://doi.org/10.1097/00005792-197401000-00001

Gong, X., Gong, Z. and Huang, H.: An immersed boundary method for mass transfer across permeable moving interfaces. Journal of Computational Physics 278, pp. 148-168 (2014) https://doi.org/10.1016/j.jcp.2014.08.025

Hu, X., Weinbaum, S.: A new view of Starling’s hypothesis at the microstructural level. Microvascular Research 58,pp. 281-304 (1999)https://doi.org/10.1006/mvre.1999.2177

Jayathilake, P.G., Tan, Z., Khoo, B.C., Wijeysundera, N.E.: Deformation and osmotic swelling of an elastic membrane capsule in Stokes flows by the immersed interface method. Chemical Engineering Science 65(3), pp. 1237-1252 (2010)https://doi.org/10.1016/j.ces.2009.09.078

Katchalsky, A., Curran, P.F.: Nonequilibrium Thermodynamics in Biophysics. Harvard University Press (1961). Michel, C.C., Curry, F.E.: Microvascular Permeability. Physiological Reviews 79, No. 3, pp. 703-761 (1999)https://doi.org/10.1152/physrev.1999.79.3.703

Miyauchi, S., Takeuchi, S., Kajishima, T.: A numerical method for mass transfer by a thin moving membrane with selective permeabilities. Journal of Computational Physics 284, pp. 490-504 (2015) https://doi.org/10.1016/j.jcp.2014.12.048

Miyauchi, S., Takeuchi, S., Kajishima, T.: A numerical method for interaction problems between fluid and membranes with arbitrary permeability for fluid. Journal of Computational Physics 345, pp. 33-57 (2017) https://doi.org/10.1016/j.jcp.2017.05.006

Layton, A.T.: Modeling water transport across elastic boundaries using an explicit jump method. SIAM Journal on Scientific Computing 28(6), pp. 2189-2207 (2006)https://doi.org/10.1137/050642198

LeVeque, R.J., and Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis 31(4), pp. 1019-1044 (1994) https://doi.org/10.1137/0731054

Lu, J., Das, S., Peters, E.A.J.F., and Kuipers J.A.M.: Direct numerical simulation of fluid flow and mass transfer in dense fluidparticle systems with surface reactions. Chemical Engineering Science 176, pp. 1-18 (2018) https://doi.org/10.1016/j.ces.2017.10.018

Peskin, C.S.: Flow patterns around heart valves: a numerical method. Journal of computational physics 10(2), pp. 252- 271 (1972)https://doi.org/10.1016/0021-9991(72)90065-4

Purkerson, M.L., Hoffsten, P.E., Klahr, S.: Pathogenesis of the glomerulopathy associated with renal infarction in rats.Kidney International 9, pp. 407-417 (1976)https://doi.org/10.1038/ki.1976.50

Sato, N., Takeuchi, S., Kajishima, T., Inagaki, M., Horinouchi, N.: A consistent direct discretization scheme on Cartesian grids for convective and conjugate heat transfer. Journal of Computaional Physics 321, pp. 76-104 (2016)https://doi.org/10.1016/j.jcp.2016.05.034

Secomb, T.W., Hsu, R.: Motion of red blood cells in capillaries with variable cross-sections. Journal of Biomechanical Engineering 118(4), pp. 538-44 (1996)https://doi.org/10.1115/1.2796041

Secomb, T.W., Hsu, R.: Resistance to blood flow in nonuniform capillaries. Microcirculation 4, pp. 421-427 (1997)https://doi.org/10.3109/10739689709146806

Secomb, T.W. ,Hsu, R., Pries, A.R.: A model for red blood cell motion in glycocalyx-lined capillaries. American Journal of Physiology-Heart and Circulatory Physiology 274, pp. H1016-H1022 (1998) https://doi.org/10.1152/ajpheart.1998.274.3.H1016

Secomb, T.W., Hsu, R., Pries, A.R.: Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. American Journal of Physiology-Heart and Circulatory Physiology 281, pp. H629-H636 (2001) https://doi.org/10.1152/ajpheart.2001.281.2.H629

Sugihara-Seki, M., Fu, B.M.: Blood flow and permeability in microvessels. Fluid Dynamics Research 37, pp. 82-132 (2005)https://doi.org/10.1016/j.fluiddyn.2004.03.006

Takeuchi, S., Fukuoka, H., Gu, J., Kajishima, T.: Interaction problem between fluid and membrane by a consistent direct discretisation approach. Journal of Computaional Physics 371, pp. 1018-1042 (2018) https://doi.org/10.1016/j.jcp.2018.05.033

Takeuchi, S., Gu, J.: Extended Reynolds lubrication model for incompressible Newtonian fluid. Physical Review Fluids 4, No. 11, 114101 (2019)https://doi.org/10.1103/PhysRevFluids.4.114101

Takeuchi, S., Miyauchi, S., Yamada, S., Tazaki, A., Zhang, L.T., Onishi, R., Kajishima, T.: Effect of lubrication in the non-Reynolds regime due to the non-negligible gap on the fluid permeation through a membrane. Fluid Dynamics Research 53, 035501 (2021)https://doi.org/10.1088/1873-7005/abf3b4

Takeuchi, S., Tazaki, A., Miyauchi, S., Kajishima, T.: A relation between membrane permeability and flow rate at low Reynolds number in circular pipe. Journal of Membrane Science 582, pp. 91-102 (2019) http://hdl.handle.net/11094/79018 (archived postprint) https://doi.org/10.1016/j.memsci.2019.03.018

Tazaki, A., Takeuchi, S., Miyauchi, S., Zhang, L.T., Onishi, R., Kajishima, T.: Fluid permeation through a membrane with infinitesimal permeability under Reynolds lubrication. Journal of Mechanics 36, pp. 637-648 (2020) https://doi.org/10.1017/jmech.2020.38

Wang, X., Gong, X., Sugiyama, K., Takagi, S., Huang, H.: An immersed boundary method for mass transfer through porous biomembranes under large deformations. Journal of Computational Physics 413, 109444 (2020) https://doi.org/10.1016/j.jcp.2020.109444

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る