リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity

MOLLA Md Rasel 0000-0003-1059-3201 SHIMIZU Akio 30769279 0000-0002-3393-6193 KOMENO Masahiro RAHMAN Nor Idayu A. SOH Joanne Ern Chi NGUYEN Le Kim Chi RAHMAN KHAN Mahbubur TESEGA Wondwossen Wale 0000-0001-8577-5793 CHEN Si PANG Xiaoling TANAKA-OKAMOTO Miki TAKASHIMA Noriyuki 80402709 SATO Akira 70464302 SUZUKI Tomoaki 0000-0001-5836-899X OGITA Hisakazu 50379236 0000-0001-6750-1668 滋賀医科大学

2022.10.07

概要

Whether a small GTPase RhoA plays a role in the pathology of abdominal aortic aneurysm (AAA) has not been determined. We show here that RhoA expression is reduced in human AAA lesions, compared with normal areas. Furthermore, incidence of AAA formation is increased in vascular smooth muscle cell (VSMC)-specific RhoA conditional knockout (cKO) mice. The contractility of the aortic rings and VSMCs from RhoA cKO mice is reduced, and expression of genes related to the VSMC contractility is attenuated by loss of RhoA. RhoA depletion activates the mitogen-activated protein (MAP) kinase signaling, including MAP4K4, in the aorta and VSMCs. Inhibition of MAP4K4 activity by DMX-5804 decreases AAA formation. Set, a binding protein to active RhoA, functions as an activator of MAP4K4 by sequestering PP2A, an inhibitor of MAP4K4, in the absence of RhoA. In conclusion, RhoA counteracts AAA formation through inhibition of MAP4K4 in cooperation with Set.

この論文で使われている画像

参考文献

1. Lindeman, J. H. The pathophysiologic basis of abdominal aortic aneurysm progression: a critical appraisal. Expert Rev. Cardiovasc. Ther. 13, 839–851 (2015).

2. Gurung, R., Choong, A. M., Woo, C. C., Foo, R. & Sorokin, V. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int. J. Mol. Sci. 21, E6334 (2020).

3. MA3RS Study Investigators. Aortic wall inflammation predicts abdominal aortic aneurysm expansion, rupture, and need for surgical repair. Circulation 136, 787–797 (2017).

4. Bogunovic, N. et al. Impaired smooth muscle cell contractility as a novel concept of abdominal aortic aneurysm pathophysiology. Sci. Rep. 9, 6837 (2019).

5. Petsophonsakul, P. et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb. Vasc. Biol. 39, 1351–1368 (2019).

6. Zhang, M. J. et al. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem. Cell Biol. 145, 119–130 (2016).

7. Chistiakov, D. A., Orekhov, A. N. & Bobryshev, Y. V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. 214, 33–50 (2015).

8. Shimizu, K., Mitchell, R. N. & Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb. Vasc. Biol. 26, 987–994 (2006).

9. Ogita, H. et al. EphA4-mediated Rho activation via Vsm-RhoGEF expressed specifically in vascular smooth muscle cells. Circ. Res. 93, 23–31 (2003).

10. Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P. & Owens, G. K. Smooth muscle differentiation marker gene expression is regulated by RhoA- mediated actin polymerization. J. Biol. Chem. 276, 341–347 (2001).

11. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

12. Ngok, S. P., Lin, W. H. & Anastasiadis, P. Z. Establishment of epithelial polarity-GEF who’s minding the GAP. J. Cell Sci. 127, 3205–3215 (2014).

13. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194–204 (2012).

14. Julian, L. & Olson, M. F. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5, e29846 (2014).

15. Shimokawa, H., Sunamura, S. & Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352–366 (2016).

16. Halper, J. & Kjaer, M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv. Exp. Med. Biol. 802, 31–47 (2014).

17. Lepore, J. J. et al. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22-α Cre transgenic mice. Genesis 41, 179–184 (2005).

18. Wang, Y. et al. Cardiomyopathy and worsened ischemic heart failure in SM22-α Cre-mediated neuropilin-1 null mice: dysregulation of PGC1α and mitochondrial homeostasis. Arterioscler Thromb. Vasc. Biol. 35, 1401–1412 (2015).

19. Roccabianca, S., Bellini, C. & Humphrey, J. D. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface 11, 20140397 (2014).

20. Cikach, F. S. et al. Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection. JCI Insight 3, 97167 (2018).

21. Dupuis, L. E. et al. Adamts5-/- mice exhibit altered aggrecan proteolytic profiles that correlate with ascending aortic anomalies. Arterioscler Thromb. Vasc. Biol. 39, 2067–2081 (2019).

22. Doran, A. C., Meller, N. & McNamara, C. A. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb. Vasc. Biol. 28, 812–819 (2008).

23. Lu, H. et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J. Am. Heart Assoc. 10, e023601 (2021).

24. Tedgui, A. & Mallat, Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515–581 (2006).

25. Belmadani, S., Zerfaoui, M., Boulares, H. A., Palen, D. I. & Matrougui, K. Microvessel vascular smooth muscle cells contribute to collagen type I deposition through ERK1/2 MAP kinase, αvβ3-integrin, and TGF-β1 in response to ANG II and high glucose. Am. J. Physiol. Heart Circ. Physiol. 295, H69–H76 (2008).

26. Takahashi, E. & Berk, B. C. MAP kinases and vascular smooth muscle function. Acta Physiol. Scand. 164, 611–621 (1998).

27. Gao, X. et al. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol. Oncol. 11, 628–639 (2017).

28. Bouzakri, K., Ribaux, P. & Halban, P. A. Silencing mitogen-activated protein 4 kinase 4 (MAP4K4) protects beta cells from tumor necrosis factor-α-induced decrease of IRS-2 and inhibition of glucose-stimulated insulin secretion. J. Biol. Chem. 284, 27892–27898 (2009).

29. Fiedler, L. R. et al. MAP4K4 inhibition promotes survival of human stem cell- derived cardiomyocytes and reduces infarct size in vivo. Cell Stem Cell 26, 458 (2020).

30. Roth Flach, R. J. et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat. Commun. 6, 8995 (2015).

31. Sawada, N. & Liao, J. K. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid. Redox Signal 20, 1251–1267 (2014).

32. Somlyo, A. P. & Somlyo, A. V. Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994).

33. Kim, J. W. et al. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 9, e53003 (2020).

34. Chen, R., Xie, R., Meng, Z., Ma, S. & Guan, K. L. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat. Cell Biol. 21, 1565–1577 (2019).

35. Farrell, A. S. et al. Targeting inhibitors of the tumor suppressor PP2A for the treatment of pancreatic cancer. Mol. Cancer Res. 12, 924–939 (2014).

36. Switzer, C. H. et al. Targeting SET/I2PP2A oncoprotein functions as a multi- pathway strategy for cancer therapy. Oncogene 30, 2504–2513 (2011).

37. Mody, H. R. et al. SET contributes to the epithelial-mesenchymal transition of pancreatic cancer. Oncotarget 8, 67966–67979 (2017).

38. Fuller, S. J. et al. MAP4K4 expression in cardiomyocytes: multiple isoforms, multiple phosphorylations and interactions with striatins. Biochem. J. 478, 2121–2143 (2021).

39. Liu, R. et al. ARHGAP18 protects against thoracic aortic aneurysm formation by mitigating the synthetic and proinflammatory smooth muscle cell phenotype. Circ. Res. 121, 512–524 (2017).

40. Nogi, M. et al. Small GTP-binding protein GDP dissociation stimulator prevents thoracic aortic aneurysm formation and rupture by phenotypic preservation of aortic smooth muscle cells. Circulation 138, 2413–2433 (2018).

41. Li, H. et al. Modulation of immune-inflammatory responses in abdominal aortic aneurysm: emerging molecular targets. J. Immunol. Res. 2018, 7213760 (2018).

42. Huang, H. et al. MAP4K4 deletion inhibits proliferation and activation of CD4+ T cell and promotes T regulatory cell generation in vitro. Cell Immunol. 289, 15–20 (2014).

43. Davis, F. M., Daugherty, A. & Lu, H. S. Updates of recent aortic aneurysm research. Arterioscler Thromb. Vasc. Biol. 39, e83–e90 (2019).

44. Golledge, J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat. Rev. Cardiol. 16, 225–242 (2019).

45. Rodin, M. B. et al. Middle age cardiovascular risk factors and abdominal aortic aneurysm in older age. Hypertension 42, 61–68 (2003).

46. Singh, K., Bønaa, K. H., Jacobsen, B. K., Bjørk, L. & Solberg, S. Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: the Tromsø Study. Am. J. Epidemiol. 154, 236–244 (2001).

47. Kanematsu, Y. et al. Pharmacologically induced thoracic and abdominal aortic aneurysms in mice. Hypertension 55, 1267–1274 (2010).

48. Kurobe, H. et al. Azelnidipine suppresses the progression of aortic aneurysm in wild mice model through anti-inflammatory effects. J. Thorac. Cardiovasc. Surg. 146, 1501–1508 (2013).

49. Cooper, H. A. et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc. Res. 117, 971–982 (2021).

50. Pang, X. et al. Novel therapeutic role for dipeptidyl peptidase III in the treatment of hypertension. Hypertension 68, 630–641 (2016).

51. Satoh, K. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat. Med. 15, 649–656 (2009).

52. Majima, T. et al. An adaptor molecule afadin regulates lymphangiogenesis by modulating RhoA activity in the developing mouse embryo. PLoS ONE 8, e68134 (2013).

53. Smith, L. R., Hammers, D. W., Sweeney, H. L. & Barton, E. R. Increased collagen cross-linking is a signature of dystrophin-deficient muscle. Muscle Nerve 54, 71–78 (2016).

54. Kwartler, C. S. et al. Vascular smooth muscle cell isolation and culture from mouse aorta. Bio-Protoc. 6, e2045 (2016).

55. Sun, J. et al. Isometric contractility measurement of the mouse mesenteric artery using wire myography. J. Vis. Exp. 138, 58064 (2018).

56. Sakota, Y., Ozawa, Y., Yamashita, H., Tanaka, H. & Inagaki, N. Collagen gel contraction assay using human bronchial smooth muscle cells and its application for evaluation of inhibitory effect of formoterol. Biol. Pharm. Bull. 37, 1014–1020 (2014).

57. Si, Y. et al. Exosomal transfer of miR-185 is controlled by hnRNPA2B1 and impairs re-endothelialization after vascular injury. Front. Cell Dev. Biol. 9, 619444 (2021).

58. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る