リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of the degree of acetylation on the physicochemical properties of α-chitin nanofibers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of the degree of acetylation on the physicochemical properties of α-chitin nanofibers

MACHIDA, Junnosuke SUENAGA, Shin OSADA, Mitsumasa 信州大学 DOI:10.1016/j.ijbiomac.2020.03.213

2020.05.27

概要

The effective utilization of abundant α-chitin resources for materials engineering applications requires methods for controlling the physicochemical properties of α-chitin nanofiber (NF) dispersions. Herein, the relationship between the degree of acetylation (DA) of α-chitin and the physicochemical properties of α-chitin nanofibers (α-ChNFs) was investigated. α-Chitin with different DAs was prepared by varying the deacetylation treatment time. These α-chitin samples were disintegrated into NFs using wet pulverization. The average width of the α-ChNFs decreased with decreasing DA. Furthermore, the transmittance and viscosity of the α-ChNF dispersions increased with decreasing DA. We successfully developed a simple model for estimating the average width of α-ChNFs with different DAs. These results indicate that the DA is an effective parameter for defining and controlling the physicochemical properties of α-ChNFs.

この論文で使われている画像

参考文献

310

[1]

N. Yan, X. Chen, Don’t waste seafood waste. Turning cast-off shells into nitrogen-rich

311

chemicals would benefit economies and the environment, Nature. 524 (2015) 155–157.

312

https://doi.org/10.1038/524155a.

313

[2]

D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a

314

structurally and mechanically graded biological nanocomposite material, Acta Mater.

315

53 (2005) 4281–4292. https://doi.org/10.1016/j.actamat.2005.05.027.

316

[3]

317

318

S. Ifuku, H. Saimoto, Chitin nanofibers: Preparations, modifications, and applications,

Nanoscale. 4 (2012) 3308–3318. https://doi.org/10.1039/c2nr30383c.

[4]

I.F. Nata, S.S.S. Wang, T.M. Wu, C.K. Lee, β-Chitin nanofibrils for self-sustaining

319

hydrogels preparation via hydrothermal treatment, Carbohydr. Polym. 90 (2012) 1509–

320

1514. https://doi.org/10.1016/j.carbpol.2012.07.022.

321

[5]

C. Chen, D. Li, Q. Hu, R. Wang, Properties of polymethyl methacrylate-based

322

nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab

323

shells, Mater. Des. 56 (2014) 1049–1056.

324

https://doi.org/10.1016/j.matdes.2013.11.057.

325

[6]

S. Suenaga, M. Osada, Parameters of hydrothermal gelation of chitin nanofibers

326

determined using a severity factor, Cellulose. 25 (2018) 6873–6885.

327

https://doi.org/10.1007/s10570-018-2053-3.

328

[7]

S. Suenaga, M. Osada, Preparation of β-chitin nanofiber aerogels by lyophilization,

329

Int. J. Biol. Macromol. 126 (2019) 1145–1149.

330

https://doi.org/10.1016/j.ijbiomac.2019.01.006.

331

[8]

P. Sikorski, R. Hori, M. Wada, Revisit of α-chitin crystal structure using high

332

resolution X-ray diffraction data, Biomacromolecules. 10 (2009) 1100–1105.

333

https://doi.org/10.1021/bm801251e.

14

334

[9]

F.C. Yang, R.D. Peters, H. Dies, M.C. Rheinstädter, Hierarchical, self-similar structure

335

in native squid pen, Soft Matter. 10 (2014) 5541–5549.

336

https://doi.org/10.1039/c4sm00301b.

337

[10]

338

339

Y. Nishiyama, Y. Noishiki, M. Wada, X-ray structure of anhydrous β-chitin at 1 Å

resolution, Macromolecules. 44 (2011) 950–957. https://doi.org/10.1021/ma102240r.

[11]

D. Sawada, Y. Nishiyama, P. Langan, V.T. Forsyth, S. Kimura, M. Wada, Direct

340

determination of the hydrogen bonding arrangement in anhydrous β-chitin by neutron

341

fiber diffraction, Biomacromolecules. 13 (2012) 288–291.

342

https://doi.org/10.1021/bm201512t.

343

[12]

D. Sawada, Y. Nishiyama, P. Langan, V.T. Forsyth, S. Kimura, M. Wada, Water in

344

crystalline fibers of dihydrate β-chitin results in unexpected absence of intramolecular

345

hydrogen bonding, PLoS One. 7 (2012) 4–11.

346

https://doi.org/10.1371/journal.pone.0039376.

347

[13]

Y. Fan, T. Saito, A. Isogai, Preparation of chitin nanofibers from squid Pen β-chitin by

348

simple mechanical treatment under acid conditions, Biomacromolecules. 9 (2008)

349

1919–1923. https://doi.org/10.1021/bm800178b.

350

[14]

S. Suenaga, N. Nikaido, K. Totani, K. Kawasaki, Y. Ito, K. Yamashita, M. Osada,

351

Effect of purification method of β-chitin from squid pen on the properties of β-chitin

352

nanofibers, Int. J. Biol. Macromol. 91 (2016) 987–993.

353

https://doi.org/10.1016/j.ijbiomac.2016.06.060.

354

[15]

S. Ifuku, K. Yamada, M. Morimoto, H. Saimoto, Nanofibrillation of dry chitin powder

355

by star burst system, J. Nanomater. 2012 (2012) 645624.

356

https://doi.org/10.1155/2012/645624.

357

358

[16]

S. Suenaga, K. Totani, Y. Nomura, K. Yamashita, I. Shimada, H. Fukunaga, N.

Takahashi, M. Osada, Effect of acidity on the physicochemical properties of α- and β15

359

chitin nanofibers, Int. J. Biol. Macromol. 102 (2017) 358–366.

360

https://doi.org/10.1016/j.ijbiomac.2017.04.011.

361

[17]

S. Suenaga, M. Osada, Systematic dynamic viscoelasticity measurements for chitin

362

nanofibers prepared with various concentrations, disintegration times, acidities, and

363

crystalline structures, Int. J. Biol. Macromol. 115 (2018) 431–437.

364

https://doi.org/10.1016/j.ijbiomac.2018.04.082.

365

[18]

S. Ifuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, H. Yano,

366

Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells,

367

Biomacromolecules. 10 (2009) 1584–1588. https://doi.org/10.1021/bm900163d.

368

[19]

S. Ifuku, M. Nogi, M. Yoshioka, M. Morimoto, H. Yano, H. Saimoto, Fibrillation of

369

dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic

370

conditions, Carbohydr. Polym. 81 (2010) 134–139.

371

https://doi.org/10.1016/j.carbpol.2010.02.006.

372

[20]

Y. Fan, T. Saito, A. Isogai, Individual chitin nano-whiskers prepared from partially

373

deacetylated α-chitin by fibril surface cationization, Carbohydr. Polym. 79 (2010)

374

1046–1051. https://doi.org/10.1016/j.carbpol.2009.10.044.

375

[21]

J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W. Argüelles-Monal, J. Desbrières, M.

376

Rinaudo, An infrared investigation in relation with chitin and chitosan

377

characterization, Polymer. 42 (2001) 3569–3580. https://doi.org/10.1016/S0032-

378

3861(00)00713-8.

379

[22]

B.M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Chitin and

380

chitosan nanofibers: Electrospinning of chitin and deacetylation of chitin nanofibers,

381

Polymer. 45 (2004) 7137–7142. https://doi.org/10.1016/j.polymer.2004.08.048.

382

383

[23]

J. Xu, L. Liu, J. Yu, Y. Zou, Z. Wang, Y. Fan, DDA (degree of deacetylation) and pHdependent antibacterial properties of chitin nanofibers against Escherichia coli,

16

384

385

Cellulose. 26 (2019) 2279–2290. https://doi.org/10.1007/s10570-019-02287-2.

[24]

R. Kose, T. Kondo, Favorable 3D-network formation of chitin nanofibers dispersed in

386

water prepared using aqueous counter collision, Sen’i Gakkaishi. 67 (2011) 91–95.

387

https://doi.org/10.2115/fiber.67.91.

388

[25]

A.K. Dutta, N. Kawamoto, G. Sugino, H. Izawa, M. Morimoto, H. Saimoto, S. Ifuku,

389

Simple preparation of chitosan nanofibers from dry chitosan powder by the star burst

390

system, Carbohydr. Polym. 97 (2013) 363–367.

391

https://doi.org/10.1016/j.carbpol.2013.05.010.

392

[26]

A.K. Dutta, H. Izawa, M. Morimoto, H. Saimoto, S. Ifuku, Simple preparation of

393

chitin nanofibers from dry squid pen β-chitin powder by the star burst system, J. Chitin

394

Chitosan Sci. 1 (2014) 186–191. https://doi.org/10.1166/jcc.2013.1023.

395

[27]

K. Azuma, R. Koizumi, H. Izawa, M. Morimoto, H. Saimoto, T. Osaki, N. Ito, M.

396

Yamashita, T. Tsuka, T. Imagawa, Y. Okamoto, T. Inoue, S. Ifuku, Hair growth-

397

promoting activities of chitosan and surface-deacetylated chitin nanofibers, Int. J. Biol.

398

Macromol. 126 (2019) 11–17. https://doi.org/10.1016/j.ijbiomac.2018.12.135.

399

400

401

17

402

Figure captions

403

Fig. 1. Preparation of deacetylated α-ChNFs.

404

Fig. 2. Effect of NaOH aqueous solution treatment time on DA. (b) Magnified illustration of

405

(a). Deacetylated chitin powder (○), solid residue (□) shown in Fig. 1.

406

Fig. 3. Effect of DA on the weight change of α-chitin.

407

Fig. 4. FT-IR spectra of deacetylated chitin powder with different DAs.

408

Fig. 5. FE-SEM image and width distribution of α-ChNFs at DA = 95%.

409

Fig. 6. FE-SEM images and width distributions of α-ChNFs at DA = 66%.

410

Fig. 7. FE-SEM images and width distributions of α-ChNFs at DA = 35%.

411

Fig. 8. Effect of DA on the transmittance and photographs of α-ChNF dispersions.

412

Fig. 9. Effect of DA on the viscosity of α-ChNF dispersions.

413

Fig. 10. Model for estimating NF width at different DAs.

414

18

415

α-Chitin powder

Deacetylation

Centrifugation and decantation

Deacetylated chitin powder

Acetic acid treatment

Centrifugation and decantation

Solid residue

Supernatant

Water added to adjust concentration

Suspension of chitin powder (1 wt%)

Wet pulverization using

Star Burst

416

417

418

419

420

421

422

423

424

425

426

Chitin nanofiber dispersion (1 wt%)

J. Machida et al.

19

Fig. 1

e of acetylation [%]

100

(a)

80

60

40

20

100

80

60

40

20

100

200

300

400

427

428

429

430

431

432

20

40

60

80

100

J. Machida et al.

20

Fig. 2

Weight change [%]

433

434

435

436

437

438

100

80

60

40

20

30

40

50

60

70

Degree of acetylation [%]

J. Machida et al.

21

Fig. 3

439

Transmittance [-]

DA

95%

60%

47%

35%

26%

4000

440

441

442

443

444

3500

3000

2500

2000

1500

1000

500

Wavenumber [cm-1]

J. Machida et al.

22

Fig. 4

445

30

DA 95%

Ave. 34.1 nm

SD 24.6 nm

1 µm

Frequency [%]

25

20

15

10

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

10 passes

NF width [nm]

446

447

448

449

450

451

J. Machida et al.

23

Fig. 5

452

40

Frequency [%]

DA 66%

1 µm

Ave. 28.4 nm

SD 14.8 nm

30

20

10

0 10 20 30 40 50 60 70 80 90

NF w idth [nm]

1 pass

Frequency [%]

40

1 µm

Ave. 31.1 nm

SD 18.4 nm

30

20

10

2 passes

0 10 20 30 40 50 60 70 80 90

NF w idth [nm]

1 µm

10 passes

453

454

455

456

457

458

Frequency [%]

80

Ave. 18.5 nm

SD 6.8 nm

60

40

20

0 10 20 30 40 50 60 70 80 90

NF w idth [nm]

J. Machida et al.

24

Fig. 6

459

80

Ave. 20.3 nm

SD 5.5 nm

Frequency [%]

DA 35%

1 µm

60

40

20

1 pass

Frequency [%]

80

1 µm

50

Ave. 18.6 nm

SD 6.7 nm

60

40

20

2 passes

1 µm

Frequency [%]

80

10 passes

10 20 30 40

NF w idth [nm]

10 20 30 40

NF w idth [nm]

50

Ave. 17.6 nm

SD 5.0 nm

60

40

20

460

461

462

463

464

465

10 20 30 40

NF w idth [nm]

50

J. Machida et al.

25

Fig. 7

466

Transmittance [%]

1 pass

3 passes

10 passes

467

468

469

470

471

472

2 passes

5 passes

80

DA of (10 passes)

35%

95%

60

40

20

25

50

75

100

Degree of acetylation [%]

J. Machida et al.

26

Fig. 8

Viscosity [mPa s]

1 pass

473

474

475

476

477

478

479

4000

3500

3000

2500

2000

1500

1000

500

2 passes

5 passes

10 passes

25

50

75

100

Degree of acetylation [%]

J. Machida et al.

27

Fig. 9

480

DA 100%

34 nm

35%

20 nm

66%

28 nm

Estimated

width

Deacetylated

part

Nondeacetylated

part

Acetic acid and

Star Burst

treatments

481

482

483

484

485

486

487

J. Machida et al.

28

Fig. 10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る