リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transient resonances in extreme-mass-ratio inspirals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transient resonances in extreme-mass-ratio inspirals

Gupta, Priti 京都大学 DOI:10.14989/doctor.k24169

2022.09.26

概要

これまでの宇宙を観測は電磁波とニュートリノのみによってきたが、近年、宇宙を観測する新しい窓が開かれた。それが重力波である。2015年に2台のLIGO重力波干渉計により重力波が初めて直接検出されて以降、100近くの恒星質量連星が同定され,今後さらに多くの連星が同定される。LIGOをはじめとする地上型検出器が高周波重力波信号の探査を続ける一方で、低周波領域(mHz-deciHz)での重力波を探索するLISA、Taiji、Tian Qin、DECIGOなどの宇宙重力波検出器の開発も進んでいる。宇宙重力波検出器の重要な重力波源の一つは、銀河中心核に存在する大質量ブラックホールによる恒星質量のコンパクト天体の捕獲イベントがある。これは「極限質量比インスパイラル(EMRI)」と呼ばれ、EMRIが観測されれば、大質量ブラックホール、および、その近傍の環境の理解が大きく進むと期待され、さらには、一般相対論を超えた重力理論の理解が大きく前進する可能性すらある。

重力波信号検出には検出器のノイズに埋もれた微弱な信号を抽出するために重力波波形の理論予測が必要となる。すなわち、EMRIからの重力波がもたらす科学的可能性を引き出せるか否かは、我々の理論的理解度に大きく依存する。本学位論文ではEMRIからの重力波波形のモデル化の問題に取り組んでいる。最近の研究により、EMRI近傍の第3の恒星質量天体が引き起こす潮汐力の影響が、EMRIの重力波波形に考慮すべき影響を与える可能性が指摘された。この影響を調べることで銀河中心近傍の潮汐場を計測できる可能性があり、銀河中心ブラックホール近傍の環境に関する他の方法では得がたい情報をもたらす。さらに、もしこの効果を考慮しなければ、EMRIを用いた一般相対論の精密な検証も大きく精度を失う可能性がある。

本研究は、EMRIでの潮汐効果として波形に最も大きな影響を与える潮汐共鳴について網羅的に研究を行ったものである。まず、典型的な潮汐力の大きさを見積もり、EMRI軌道発展への影響を調べることで、どのような軌道を取るEMRIにおいて潮汐共鳴を考慮しなければならないかを定量的に明らかにしている。結果として、まず、重力波放射の反作用によって形成されるEMRIの大部分が、効果の大きい共鳴状態を通過することを明らかにしている。さらに、典型的な潮汐力の大きさを仮定した場合、十分な頻度で潮汐力が無視できないEMRI事象が発生することを明らかにしている。その過程で潮汐力の大きさとEMRI軌道への影響を網羅的に調べ、広範囲なパラメータ空間に適用可能なフィッティング公式を導出することにも成功している。この公式は、実際の重力波データ解析にも応用が可能なものである。この得られた結果を基礎として、さらに共鳴を考慮した高速に計算可能な波形モデルも提示している。このモデルは区分的に共鳴を考慮しない波形モデルをつなぐという単純なものだが、重力波データ解析に用いる波形として十分な精度があること、また、誤ったバイアスを生まないことをフィッシャー解析を用いて示している。

この論文で使われている画像

参考文献

[1] LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016.

[2] The Ligo Scientific Collaboration and the Virgo Collaboration. Population properties of compact objects from the second LIGO–virgo gravitational-wave transient catalog. The Astrophysical Journal Letters, 913(1):L7, May 2021.

[3] Pau Amaro-Seoane et al. eLISA: Astrophysics and cosmology in the millihertz regime. arXiv-1201.3621, 2012.

[4] S. Kawamura et al. The Japanese space gravitational wave antenna DECIGO. Class. Quant. Grav., 23:S125–S132, 2006.

[5] Jun Luo et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity, 33(3):035010, Jan 2016.

[6] Béatrice Bonga, Huan Yang, and Scott A. Hughes. Tidal resonance in extreme mass-ratio inspirals. Phys. Rev. Lett., 123(10):101103, 2019.

[7] Cosimo Bambi. Classical Tests of General Relativity, pages 163–178. Springer, 2018.

[8] Albert Einstein. Relativity: the Special and the General Theory. Routledge classics. Fifteenth edition, 2001.

[9] Sean M. Carroll. Lecture notes on general relativity, 1997.

[10] S. Chandrasekhar. The Mathematical Theory of Black Holes, pages 5–26. Springer, 1984.

[11] Bending of Light in the 1919 Eclipse Experiments: Einstein and Eddington, pages 127–137. Springer, 2009.

[12] N. S. Hetherington. Sirius B and the gravitational redshift - an historical review. Quarterly Journal of the Royal Astronomical Society, 21:246–252, September 1980.

[13] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019.

[14] Dimitrios Psaltis. Testing general relativity with the event horizon telescope. General Relativity and Gravitation, 51(10), Oct 2019.

[15] Thibault Damour. Poincaré, the dynamics of the electron, and relativity. Comptes Rendus Physique, 18(9):551–562, 2017.

[16] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system. Apj letters, 195:L51–L53, January 1975.

[17] J. M. Weisberg, D. J. Nice, and J. H. Taylor. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16. Apj, 722(2):1030–1034, October 2010.

[18] LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119:161101, Oct 2017.

[19] M. Nicholl et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. The Astrophysical Journal, 848(2):L18, oct 2017.

[20] Alexander H. Nitz et al. 3-OGC: Catalog of gravitational waves from compactbinary mergers. The Astrophysical Journal, 922(1):76, nov 2021.

[21] Michele Maggiore. Gravitational waves. Oxford Univ. Press, Oxford, 2008.

[22] LIGO Scientific and Virgo Collaborations. Tests of General Relativity with GW150914. Phys. Rev. Lett., 116:221101, May 2016.

[23] Pau Amaro-Seoane. The gravitational capture of compact objects by massive black holes, 2020.

[24] Pau Amaro-Seoane. Extremely large mass-ratio inspirals. Phys. Rev. D, 99:123025, Jun 2019.

[25] Prospects for fundamental physics with LISA. General Relativity and Gravitation, 52(8), 2020.

[26] G. B. Hobbs and others. Gravitational-wave detection using pulsars: Status of the parkes pulsar timing array project. Publications of the Astronomical Society of Australia, 26(2):103–109, 2009.

[27] P. C. Peters and J. Mathews. Gravitational radiation from point masses in a keplerian orbit. Phys. Rev., 131:435–440, Jul 1963.

[28] Edwin Hubble. A Relation between Distance and Radial Velocity among ExtraGalactic Nebulae. Proceedings of the National Academy of Science, 15(3):168–173, March 1929.

[29] R W Wilson. History of the discovery of the cosmic microwave background radiation. Physica Scripta, 21(5):599–605, jan 1980.

[30] C. L. Bennett et al. First-year wilkinson microwave anisotropy probe (WMAP) observations: Preliminary maps and basic results. The Astrophysical Journal Supplement Series, 148(1):1–27, sep 2003.

[31] Planck collaboration. Planck results VI. Cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.

[32] Gerard Auger and Eric Plagnol. An Overview of Gravitational Waves: Theory, Sources and Detection. World Scientific, Singapore, 2017.

[33] R. N. Manchester. Pulsar glitches and their impact on neutron-star astrophysics. IAU Symp., 337:197–202, 2017.

[34] Angelo Ricciardone. Primordial gravitational waves with LISA. Journal of Physics: Conference Series, 840:012030, May 2017.

[35] Alvin J. K. Chua, Michael L. Katz, Niels Warburton, and Scott A. Hughes. Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for lisa data analysis. Phys. Rev. Lett., 126:051102, Feb 2021.

[36] E. A. Huerta and Zhizhen Zhao. Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources. In Handbook of Gravitational Wave Astronomy, pages 1–27. Springer, 2021.

[37] Razieh Emami and Abraham Loeb. Observational signatures of the black hole mass distribution in the galactic center. Journal of Cosmology and Astroparticle Physics, 2020(02):021–021, Feb 2020.

[38] Razieh Emami and Abraham Loeb. Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 502(3):3932–3941, 02 2021.

[39] Zhen Pan and Huan Yang. Formation rate of extreme mass ratio inspirals in active galactic nuclei. Phys. Rev. D, 103:103018, May 2021.

[40] Zhen Pan, Zhenwei Lyu, and Huan Yang. Wet extreme mass ratio inspirals may be more common for spaceborne gravitational wave detection. Phys. Rev. D, 104:063007, Sep 2021.

[41] Bence Kocsis, Nicolás Yunes, and Abraham Loeb. Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Physical Review D, 84(2), Jul 2011.

[42] Audrey Galametz et al. The cosmic evolution of active galactic nuclei in galaxy clusters. The Astrophysical Journal, 694(2):1309–1316, Mar 2009.

[43] Michael Macuga and et al. The fraction of active galactic nuclei in the uss 1558–003 protocluster at z = 2.53. The Astrophysical Journal, 874(1):54, Mar 2019.

[44] Jonathan R Gair, Stanislav Babak, Alberto Sesana, Pau Amaro-Seoane, Enrico Barausse, Christopher P L Berry, Emanuele Berti, and Carlos Sopuerta. Prospects for observing extreme-mass-ratio inspirals with LISA. Journal of Physics: Conference Series, 840:012021, may 2017.

[45] Christopher P. L. Berry, Scott A. Hughes, Carlos F. Sopuerta, Alvin J. K. Chua, Anna Heffernan, Kelly Holley-Bockelmann, Deyan P. Mihaylov, M. Coleman Miller, and Alberto Sesana. The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy. arXiv-1903.03686, 2019.

[46] Abhay Ashtekar. The simplicity of black holes. Physics, 8, 2015.

[47] Leor Barack and Curt Cutler. Using LISA extreme-mass-ratio inspiral sources to test off-kerr deviations in the geometry of massive black holes. Physical Review D, 75(4), 2007.

[48] James M. Bardeen, William H. Press, and Saul A. Teukolsky. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Apj, 178:347–370, December 1972.

[49] W Schmidt. Celestial mechanics in kerr spacetime. Classical and Quantum Gravity, 19(10):2743–2764, Apr 2002.

[50] Yasushi Mino. Perturbative approach to an orbital evolution around a supermassive black hole. Physical Review D, 67(8), Apr 2003.

[51] Ryuichi Fujita and Wataru Hikida. Analytical solutions of bound timelike geodesic orbits in kerr spacetime. Classical and Quantum Gravity, 26(13):135002, June 2009.

[52] Yasushi Mino, Misao Sasaki, and Takahiro Tanaka. Gravitational radiation reaction to a particle motion. Physical Review D, 55(6):3457–3476, Mar 1997.

[53] Theodore C. Quinn and Robert M. Wald. Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Physical Review D, 56(6):3381–3394, Sep 1997.

[54] Eric Poisson, Adam Pound, and Ian Vega. The motion of point particles in curved spacetime. Living Reviews in Relativity, 14(1), Sep 2011.

[55] Leor Barack and Adam Pound. Self-force and radiation reaction in general relativity. Reports on Progress in Physics, 82(1):016904, Nov 2018.

[56] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. The Astrophysical Journal, 2017.

[57] Adam Pound, Barry Wardell, Niels Warburton, and Jeremy Miller. Second-order self-force calculation of gravitational binding energy in compact binaries. Physical Review Letters, 124(2), Jan 2020.

[58] Samuel D. Upton and Adam Pound. Second-order gravitational self-force in a highly regular gauge. Phys. Rev. D, 103:124016, June 2021.

[59] R. Fujita. Gravitational waves from a particle in circular orbits around a schwarzschild black hole to the 22nd post-newtonian order. Progress of Theoretical Physics, 128(5):971–992, nov 2012.

[60] R. Fujita. Gravitational waves from a particle in circular orbits around a rotating black hole to the 11th post-newtonian order. Progress of Theoretical and Experimental Physics, 2015(3):33E01–0, 2015.

[61] Ryuichi Fujita and Masaru Shibata. Extreme mass ratio inspirals on the equatorial plane in the adiabatic order. Physical Review D, 102(6), sep 2020.

[62] Leor Barack and Curt Cutler. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Physical Review D, 69(8), apr 2004.

[63] Stanislav Babak, Hua Fang, Jonathan R. Gair, Kostas Glampedakis, and Scott A. Hughes. ’Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D, 75:024005, 2007.

[64] E. A. Huerta and Jonathan R. Gair. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals. Phys. Rev. D, 79:084021, 2009.

[65] E. A. Huerta, Prayush Kumar, Jonathan R. Gair, and Sean T. McWilliams. Self-forced evolutions of an implicit rotating source: A natural framework to model comparable and intermediate mass-ratio systems from inspiral through ringdown. Phys. Rev. D, 90(2):024024, 2014.

[66] Alvin J. K. Chua and Jonathan R. Gair. Improved analytic extreme-massratio inspiral model for scoping out eLISA data analysis. Class. Quant. Grav., 32:232002, 2015.

[67] Alvin J. K. Chua, Christopher J. Moore, and Jonathan R. Gair. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D, 96(4):044005, 2017.

[68] Georgios Lukes-Gerakopoulos, George Contopoulos, and Theocharis A. Apostolatos. Non-linear effects in non-kerr spacetimes. In Springer Proceedings in Physics, pages 129–136. Springer International Publishing, 2014.

[69] Georgios Lukes-Gerakopoulos, Theocharis A. Apostolatos, and George Contopoulos. Observable signature of a background deviating from the Kerr metric. Phys. Rev. D, 81:124005, 2010.

[70] Jonathan R. Gair, Chao Li, and Ilya Mandel. Observable Properties of Orbits in Exact Bumpy Spacetimes. Phys. Rev. D, 77:024035, 2008.

[71] Kyriakos Destounis, Arthur G. Suvorov, and Kostas D. Kokkotas. Gravitational wave glitches in chaotic extreme-mass-ratio inspirals. Physical Review Letters, 126(14), apr 2021.

[72] Maarten van de Meent. Conditions for Sustained Orbital Resonances in Extreme Mass Ratio Inspirals. Phys. Rev. D, 89(8):084033, 2014.

[73] Éanna É. Flanagan and Tanja Hinderer. Transient resonances in the inspirals of point particles into black holes. Phys. Rev. Lett., 109:071102, Aug 2012.

[74] Éanna E. Flanagan, Scott A. Hughes, and Uchupol Ruangsri. Resonantly enhanced and diminished strong-field gravitational-wave fluxes. Phys. Rev. D, 89(8):084028, 2014.

[75] Tanja Hinderer and Éanna É. Flanagan. Two-timescale analysis of extreme mass ratio inspirals in kerr spacetime: Orbital motion. Phys. Rev. D, 78:064028, Sep 2008.

[76] Scott A. Hughes, Niels Warburton, Gaurav Khanna, Alvin J. K. Chua, and Michael L. Katz. Adiabatic waveforms for extreme mass-ratio inspirals via multivoice decomposition in time and frequency. Phys. Rev. D, 103:104014, May 2021.

[77] Alvin J. K. Chua, Michael L. Katz, Niels Warburton, and Scott A. Hughes. Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for lisa data analysis. Phys. Rev. Lett., 126:051102, Feb 2021.

[78] Uchupol Ruangsri and Scott A. Hughes. Census of transient orbital resonances encountered during binary inspiral. Phys. Rev. D, 89:084036, Apr 2014.

[79] Christopher P. L. Berry, Robert H. Cole, Priscilla Cañizares, and Jonathan R. Gair. Importance of transient resonances in extreme-mass-ratio inspirals. Phys. Rev. D, 94:124042, Dec 2016.

[80] Jeandrew Brink, Marisa Geyer, and Tanja Hinderer. Orbital resonances around black holes. Phys. Rev. Lett., 114:081102, Feb 2015.

[81] Lorenzo Speri and Jonathan R. Gair. Assessing the impact of transient orbital resonances. Phys. Rev. D, 103:124032, Jun 2021.

[82] Maarten van de Meent. Resonantly enhanced kicks from equatorial small massratio inspirals. Phys. Rev. D, 90(4):044027, 2014.

[83] Nicolas Yunes and Jose Gonzalez. Metric of a tidally perturbed spinning black hole. 73:024010, 2006.

[84] Paul L. Chrzanowski. Vector potential and metric perturbations of a rotating black hole. Phys. Rev. D, 11:2042–2062, Apr 1975.

[85] Eric Poisson. Tidal deformation of a slowly rotating black hole. Physical Review D, 91(4):044004, 2015.

[86] Saul A. Teukolsky. Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J., 185:635–647, 1973.

[87] Saul A Teukolsky. The kerr metric. Classical and Quantum Gravity, 32(12):124006, Jun 2015.

[88] Robert M. Wald. Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations. Phys. Rev. Lett., 41:203–206, Jul 1978.

[89] Lawrence S. Kegeles and Jeffrey M. Cohen. Constructive procedure for perturbations of spacetimes. Phys. Rev. D, 19:1641–1664, Mar 1979.

[90] Manuela Campanelli and Carlos O. Lousto. Second order gauge invariant gravitational perturbations of a kerr black hole. Physical Review D, 59(12), may 1999.

[91] Huan Yang and Marc Casals. General relativistic dynamics of an extreme massratio binary interacting with an external body. Phys. Rev. D, 96:083015, Oct 2017.

[92] Lorenz Zwick, Pedro R Capelo, Elisa Bortolas, Verónica Vázquez-Aceves, Lucio Mayer, and Pau Amaro-Seoane. Improved gravitational radiation time-scales II: Spin–orbit contributions and environmental perturbations. Monthly Notices of the Royal Astronomical Society, 506(1):1007–1018, 06 2021.

[93] Kazunari Eda, Yousuke Itoh, Sachiko Kuroyanagi, and Joseph Silk. New probe of dark-matter properties: Gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike. Physical Review Letters, 110(22), May 2013.

[94] Kazunari Eda, Yousuke Itoh, Sachiko Kuroyanagi, and Joseph Silk. Gravitational waves as a probe of dark matter minispikes. Physical Review D, 91(4), Feb 2015.

[95] Bradley J. Kavanagh, David A. Nichols, Gianfranco Bertone, and Daniele Gaggero. Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform. Physical Review D, 102(8), Oct 2020.

[96] Huan Yang, Béatrice Bonga, Zhipeng Peng, and Gongjie Li. Relativistic Mean Motion Resonance. Phys. Rev. D, 100(12):124056, 2019.

[97] Pau Amaro-Seoane, Patrick Brem, Jorge Cuadra, and Philip J. Armitage. The butterfly effect in the extreme-mass ratio inspiral problem. The Astrophysical Journal, 744(2):L20, dec 2011.

[98] E. Gourgoulhon, A. Le Tiec, F. H. Vincent, and N. Warburton. Gravitational waves from bodies orbiting the galactic center black hole and their detectability by lisa. Astronomy & Astrophysics, 627:A92, Jul 2019.

[99] Christopher P.L. Berry, Robert H. Cole, Priscilla Cañizares, and Jonathan R. Gair. Importance of transient resonances in extreme-mass-ratio inspirals. Physical Review D, 94(12), Dec 2016.

[100] Priti Gupta, Béatrice Bonga, Alvin J. K. Chua, and Takahiro Tanaka. Importance of tidal resonances in extreme-mass-ratio inspirals. Phys. Rev. D, 104:044056, Aug 2021.

[101] Alexandre Le Tiec, Marc Casals, and Edgardo Franzin. Tidal love numbers of kerr black holes. Phys. Rev. D, 103:084021, Apr 2021.

[102] Eric Poisson and Igor Vlasov. Geometry and dynamics of a tidally deformed black hole. Physical Review D, 81(2), Jan 2010.

[103] Eric Poisson. Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation. Phys. Rev. D, 70(8):084044, Oct 2004.

[104] R. Fujita and H. Tagoshi. New numerical methods to evaluate homogeneous solutions of the teukolsky equation. Progress of Theoretical Physics, 112(3):415–450, Sep 2004.

[105] R. Fujita and H. Tagoshi. New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation. II: – Solutions of the Continued Fraction Equation. Progress of Theoretical Physics, 113(6):1165–1182, June 2005.

[106] R. Fujita, W. Hikida, and H. Tagoshi. An efficient numerical method for computing gravitational waves induced by a particle moving on eccentric inclined orbits around a kerr black hole. Progress of Theoretical Physics, 121(4):843–874, Apr 2009.

[107] Misao Sasaki and Hideyuki Tagoshi. Analytic black hole perturbation approach to gravitational radiation. Living Reviews in Relativity, 6(1), Nov 2003.

[108] S. Mano, H. Suzuki, and E. Takasugi. Analytic solutions of the teukolsky equation and their low frequency expansions. Progress of Theoretical Physics, 95(6):1079–1096, Jun 1996.

[109] S. Mano, H. Suzuki, and E. Takasugi. Analytic solutions of the regge-wheeler equation and the post-minkowskian expansion. Progress of Theoretical Physics, 96(3):549–565, Sep 1996.

[110] M. Shuhei and T. Eiichi. Analytic solutions of the teukolsky equation and their properties. Progress of Theoretical Physics, 97(2):213–232, Feb 1997.

[111] Black Hole Perturbation Toolkit. (bhptoolkit.org).

[112] Adam Pound and Eric Poisson. Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals. Phys. Rev., D77:044013, 2008.

[113] Jonathan R. Gair, Eanna E. Flanagan, Steve Drasco, Tanja Hinderer, and Stanislav Babak. Forced motion near black holes. Phys. Rev., D83:044037, 2011.

[114] Black Hole Perturbation Club. (https://sites.google.com/view/bhpc1996/home).

[115] Eric Poisson and Clifford M. Will. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, 2014.

[116] Adam Pound and Eric Poisson. Osculating orbits in schwarzschild spacetime, with an application to extreme mass-ratio inspirals. Phys. Rev. D, 77:044013, Feb 2008.

[117] Stanislav Babak, Jonathan Gair, Alberto Sesana, Enrico Barausse, Carlos F. Sopuerta, Christopher P.L. Berry, Emanuele Berti, Pau Amaro-Seoane, Antoine Petiteau, and Antoine Klein. Science with the space-based interferometer lisa. Physical Review D, 95(10), May 2017.

[118] Curt Cutler and Michele Vallisneri. Lisa detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms. Physical Review D, 76(10), Nov 2007.

[119] Michael L. Katz, Alvin J.K. Chua, Lorenzo Speri, Niels Warburton, and Scott A. Hughes. Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Physical Review D, 104(6), Sep 2021.

[120] Barry Wardell, Adam Pound, Niels Warburton, Jeremy Miller, Leanne Durkan, and Alexandre Le Tiec. Gravitational waveforms for compact binaries from second-order self-force theory. arXiv, eprint: 2112.12265, Dec 2021.

[121] Philip Lynch, Maarten van de Meent, and Niels Warburton. Eccentric self-forced inspirals into a rotating black hole. arXiv, eprint: 2112.05651, Dec 2021.

[122] Pau Amaro-Seoane et al. Astrophysics with the Laser Interferometer Space Antenna. arXiv, eprint: 2203.06016, Mar 2022.

[123] Soichiro Isoyama, Ryuichi Fujita, Hiroyuki Nakano, Norichika Sago, and Takahiro Tanaka. Evolution of the Carter constant for resonant inspirals into a Kerr black hole: I. The scalar case. PTEP, 2013(6):063E01, 2013.

[124] Soichiro Isoyama, Ryuichi Fujita, Alvin J. K. Chua, Hiroyuki Nakano, Adam Pound, and Norichika Sago. Adiabatic waveforms from extreme-mass-ratio inspirals: An analytical approach. Phys. Rev. Lett., 128:231101, Jun 2022.

[125] Zachary Nasipak and Charles R. Evans. Resonant self-force effects in extrememass-ratio binaries: A scalar model. Phys. Rev. D, 104:084011, Oct 2021.

[126] Gravitational-Wave Data Analysis, chapter 7, pages 269–347. 2011.

[127] Michael L. Katz, Alvin J. K. Chua, Niels Warburton, and Scott A. Hughes. BlackHolePerturbationToolkit/FastEMRIWaveforms: Official Release, August 2020.

[128] David Bronicki, Alejandro Cárdenas-Avendaño, and Leo C. Stein. Tidallyinduced nonlinear resonances in EMRIs with an analogue model. arXiv, eprint: 2203.08841, Mar 2022.

参考文献をもっと見る