リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of mesoscopic particles of multi-component rare earth permanent magnet compounds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of mesoscopic particles of multi-component rare earth permanent magnet compounds

Trinh, T. Thuy Kim, Jungryang Sato, Ryota Matsumoto, Kenshi Teranishi, Toshiharu 京都大学 DOI:10.1080/14686996.2020.1862630

2021

概要

Multielement rare earth (R)–transition metal (T) intermetallics are arguably the next generation of high-performance permanent magnetic materials for future applications in energy-saving and renewable energy technologies. Pseudobinary Sm₂Fe₁₇N₃ and (R, Zr)(Fe, Co, Ti)₁₂ (R = Nd, Sm) compounds have the highest potential to meet current demands for rare-earth-element-lean permanent magnets (PMs) with ultra-large energy product and operating temperatures up to 200°C. However, the synthesis of these materials, especially in the mesoscopic scale for maximizing the maximum energy product ((BH)max), remains a great challenge. Nonequilibrium processes are apparently used to overcome the phase-stabilization challenge in preparing the R–T intermetallics but have limited control of the material’s microstructure. More radical bottom-up nanoparticle approaches based on chemical synthesis have also been explored, owing to their potential to achieve the desired composition, structure, size, and shape. While a great achievement has been made for the Sm₂Fe₁₇N₃, progress in the synthesis of (R, Zr)(Fe, Co, Ti)₁₂ magnetic mesoscopic particles (MMPs) and R–T/T exchange-coupled nanocomposites (NCMs) with substantial coercivity (Hc) and remanence (Mr), respectively, remains marginal.

この論文で使われている画像

参考文献

[1] Hirosawa S, Matsuura Y, Yamamoto H, et al.

Magnetization and magnetic anisotropy of R2Fe14

B measured on single crystals. J Appl Phys.

1986;59:873–879.

[2] Sagawa M, Hirosawa S, Yamamoto H, et al. Nd–Fe–B

permanent magnet materials. Jpn J Appl Phys.

1987;26:785–800.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. Technol. Adv. Mater. 22 (2021) 50

[3] Matsuura Y. Recent development of Nd–Fe–B sin­

tered magnets and their applications. J Magn Magn

Mater. 2006;303:344–347.

[4] Gutfleisch O, Willard MA, Brück E, et al. Magnetic

materials and devices for the 21st century: stronger,

lighter, and more energy efficient. Adv Mater.

2011;23:821–842.

[5] Sugimoto S. Current status and recent topics of

rare-earth permanent magnets. J Phys D: Appl Phys.

2011;44:064001.

[6] Hirosawa S. Current status of research and develop­

ment toward permanent magnets free from critical

elements. 2015;39:85–95.

[7] Hirosawa S, Nishino M, Miyashita S. Perspectives

for high-performance permanent magnets: applica­

tions, coercivity, and new materials. Adv Nat Sci.

2017;8:013002.

[8] Coey JMD. Perspective and prospects for rare earth

permanent magnets. Engineering. 2020;6:119–131.

[9] Miyake T, Akai H. Quantum theory of rare-earth

magnets. J Phys Soc Jpn. 2018;87:041009.

[10] Akai H. Maximum performance of permanent mag­

net materials. Scr Mater. 2018;154:300–304.

[11] Weller D, Moser A, Folks L, et al. High Ku materials

approach to 100 Gbits/in2. IEEE Trans Magn.

2000;36:10–15.

[12] Yang YC, Zhang XD, Ge SL, et al. Magnetic and

crystallographic properties of novel Fe-rich rareearth nitrides of the type RTiFe11N1-δ (invited).

J Appl Phys. 1991;70:6001–6005.

[13] Akayama M, Fujii H, Yamamoto K, et al. Physical

properties of nitrogenated RFe11Ti intermetallic

compounds (R = Ce, Pr and Nd) with ThMn12-type

structure. J Magn Magn Mater. 1994;130:99–107.

[14] Sakurada S, Tsutai A, Hirai T, et al. Structural and

magnetic properties of rapidly quenched (R,Zr)(Fe,Co)

10Nx (R=Nd, Sm). J Appl Phys. 1996;79:4611–4613.

[15] Hirayama Y, Takahashi YK, Hirosawa S, et al.

NdFe12Nx hard-magnetic compound with high

magnetization and anisotropy field. Scr Mater.

2015;95:70–72.

[16] Suzuki S, Kuno T, Urushibata K, et al. A new magnet

material with ThMn12 structure: (Nd1-xZrx) (Fe1yCoy)11+zTi1-zNα (α = 0.6–1.3). J Magn Magn

Mater. 2016;401:259–268.

[17] Ohashi K, Tawara Y, Osugi R, et al. Magnetic properties

of Fe-rich rare-earth intermetallic compounds with

a ThMn12 structure. J Appl Phys. 1988;64:5714–5716.

[18] Cheng SF, Sinha VK, Xu Y, et al. Magnetic and

structural properties of SmTiFe11-xCox alloys.

J Magn Magn Mater. 1988;75:330–338.

[19] Iriyama T, Kobayashi K, Imaoka N, et al. Effect of nitro­

gen content on magnetic properties of Sm2Fel7Nx (0 <

x < 6). IEEE Trans Magn. 1992;28:2326–2331.

[20] Hirayama Y, Takahashi YK, Hirosawa S, et al.

Intrinsic hard magnetic properties of Sm(Fe1-xCox)

12 compound with the ThMn12 structure. Scr Mater.

2017;138:62–65.

[21] Gabay MA, Hadjipanayis GC. Recent developments

in RFe12-type compounds for permanent magnets.

Scr Mater. 2018;154:284–288.

[22] Tozman P, Sepehri-Amin H, Takahashi YK, et al.

Intrinsic magnetic properties of Sm(Fe1-xCox)11Ti

and Zr–substituted Sm1-yZry(Fe0.8Co0.2)11.5Ti0.5

compounds with ThMn12 structure toward the devel­

opment of permanent magnets. Acta Materialia.

2018;153:354–363.

T. T. TRINH et al.

[23] Aharoni A. Theoretical search for domain nucleation.

Rev Mod Phys. 1962;34:227–238.

[24] Brown WF. Micromagnetics. New York: Wiley; 1963.

[25] Kronmüller H. Theory of nucleation fields in inho­

mogeneous ferromagnets. Phys Stat Sol (B). 1987;

144:385–396.

[26] Kronmüller H, Durst K-D, Sagawa M. Analysis of the

magnetic hardening mechanism in RE-FeB perma­

nent magnets. J Magn Magn Mater. 1988;74:291–302.

[27] Coey JMD. Rare-earth iron permanent magnets.

Oxford: Oxford University Press; 1996.

[28] Givord D, Rossignol M, Barthem VMTS. The physics

of coercivity. J Magn Magn Mater. 2003;258–259:1–5.

[29] Skomski R. Nanomagnetics. J Phys Condens Matter.

2003;15:R841–R896.

[30] Balamurugan B, Sellmyer DJ, Hadjipanayis GC, et al.

Prospects for nanoparticle-based permanent magnets.

Scr Mater. 2012;67:542–547.

[31] Poudyal N, Liu JP. Advances in nanostructured per­

manent magnets research. J Phys D: Appl Phys.

2013;46:043001.

[32] Yue M, Zhang Z, Liu JP. Fabrication of bulk nanos­

tructured permanent magnets with high energy den­

sity: challenges and approaches. Nanoscale. 2017;9:

3674–3697.

[33] Kittel C. Theory of the structure of ferromagnetic

domains in films and small particles. Phys Rev.

1945;70:965–971.

[34] Kittel C. Physical theory of ferromagnetic domains.

Rev Mod Phys. 1949;21:541–583.

[35] O’Handley RC. Modern magnetic materials: prin­

ciples and applications. Weinheim: Wiley-VCH;

2000.

[36] Coey JMD. Magnetism and magnetic materials.

Cambridge, U.K.: Cambridge University Press; 2010.

[37] Imaoka N, Iriyama T, Itoh S, et al. Effect of Mn

addition to Sm-Fe-N magnets on the thermal stability

of coercivity. J Alloys Compd. 1995;222:73–77.

[38] Tada S, Tomimoto T, Kume M. REPM’12 Proc. 2012.

p. 48–53.

[39] Hirayama Y, Panda AK, Ohkubo T, et al. High coer­

civity Sm2Fe17N3 submicron size powder prepared

by polymerized-complex and reduction–diffusion

process. Scr Mater. 2016;120:27–30.

[40] Stmeszewski J, Wang YZ, Singleton EW, et al. High

coercivity in Sm(FeT)12 type magnets. IEEE Trans

Magn. 1989;25:3309–3311.

[41] Okada M, Yamagishi K, Homma M. High coercivity

in melt-spun SmFe10(TiV) ribbons. Mater Trans JIM.

1989;30:374–377.

[42] Sun H, Otani Y, Coey JMD. Coercivity and micro­

structure of melt-spun Sm(Fe11Ti). J Appl Phys.

1990;67:4659–4661.

[43] Wang Y, Hadjipanayis GC, Kim A, et al. Magnetic

and structural studies in Sm-Fe-Ti magnets. J Appl

Phys. 1990;67:4954–4956.

[44] Sugimoto S, Kojima A, Okada M, et al. Enhancement

of magnetic properties of Sm(Fe,Co,Ti)12 melt-spun

ribbons by refining crystalized grains. Mater Trans

JIM. 1991;32:1180–1183.

[45] Suzuki S, Inoue N, Miura T. Magnetic properties of

RFe11-xCoxTiNy (R: Nd, Pr) compounds with

ThMn12 type structure. IEEE Tran Magn. 1992;

28:2005–2009.

[46] Bessais L, Djega-Mariadassou C. Structure and mag­

netic properties of nanocrystalline SmFe1-xCoxTi11

(x ≤ 2). Phys Rev B. 2001;79:054412.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. Technol. Adv. Mater. 22 (2021) 51

[47] Gong W, Hadjipanayis GC. Nitrogenated 1:12

Compounds Prepared by Mechanical Alloying.

IEEE Trans Magn. 1992;28:2563–2565.

[48] Pinkerton FE, Van Wingerden DJ. Magnetic harden­

ing of SmFe10V2 by melt-spinning. IEEE Trans

Magn. 1989;25:3306–3308.

[49] Singleton EW, Strzeszewski J, Hadjipanayis JC, et al.

Magnetic and structural properties of melt-spun

rare-earth transition-metal intermetallics with

ThMn12 structure. J Appl Phys. 1988;64:5717–5719.

[50] Singleton EW, Strzeszewski J, Hadjipanayis GC. High

coercivity in rapidly quenched Sm(Fe,T)12-type

magnets. Appl Phys Lett. 1989;54:1934–1936.

[51] Strnat K, Hoffer G, Olson J, et al. A family of new

cobalt-base permanent magnet materials. J Appl

Phys. 1967;38:1001–1002.

[52] Sagawa M, Fujimura S, Togawa N, et al. New material

for permanent magnets on a base of Nd and Fe

(invited). J Appl Phys. 1984;55:2083–2087.

[53] Sagawa M, Fujimura S, Togawa N, et al. Permanent

magnet materials based on the rare earth-iron-boron

tetragonal compounds (invited). IEEE Trans Magn.

1984;MAG-20:1584–1589.

[54] Croat JJ, Herbst JF, Lee RW, et al. Pr-Fe and Nd-Febased materials: A new class of high-performance

permanent magnets (invited). J Appl Phys. 1984;

55:2078–2082.

[55] Croat JJ, Herbst JF, Lee RW, et al. High-energy pro­

duct Nd-Fe-B permanent magnets. Appl Phys Lett.

1984;44:148–149.

[56] Cadieu FJ. Recent advances in pseudobinary iron

based permanent magnets. Int Mater Rev. 1995;

40:137–148.

[57] Rama Rao KVS, Markandeyulu G, Suresh KG, et al.

Recent advances in 2:17 and 3:29 permanent magnet

materials. Bull Mater Sci. 1999;22:509–517.

[58] Müller A. Magnetic material R,Fe,Mo,(Co) with

ThMn12 structure. J Appl Phys. 1988;64:249–251.

[59] Jang TS, Stadelmaier HH. Phase equilibria and mag­

netic properties of iron-rich Fe-Nd-Ti and Fe-Sm-Ti

alloys. J Appl Phys. 1990;67:4957–4959.

[60] Suski W. Phase diagrams as the framework of inves­

tigations of the magnetic properties of ThMn12-type

f electron intermetallics. Powder Metall Met Ceram.

1997;36:231–241.

[61] Liu Y, Sellmyer DJ, Shindo D. Handbook of advanced

magnetic materials. New York: Springer; 2006.

[62] Wu L, Mendoza-Garcia A, Li Q, et al. Organic phase

syntheses of magnetic nanoparticles and their

applications. Chem Rev. 2016;116:10473–10512.

[63] Shen B, Sun S. Chemical synthesis of magnetic nano­

particles for permanent magnet Applications. Chem

Eur J. 2020;26:6757–6766.

[64] Peng S, Wang C, Xie J, et al. Synthesis and stabiliza­

tion of monodisperse Fe nanoparticles. J Am Chem

Soc. 2006;128:10676–10677.

[65] Hou Y, Xu Z, Peng S, et al. A facile synthesis of

SmCo5 magnets from core/shell Co/Sm2O3

nanoparticles. Adv Mater. 2007;19:3349–3352.

[66] Wu Q, Cong L, Yue M, et al. A unique synthesis of rareearth-Co-based single crystal particles by “self-aligned”

Co nano-arrays. Nanoscale. 2020;12:13958–13963.

[67] Carroll KJ, Hudgins DM, Spurgeon S, et al. One-pot

aqueous synthesis of Fe and Ag core/shell

nanoparticles. Chem Mater. 2010;22:6291–6296.

T. T. TRINH et al.

[68] Hou Y, Xu Z, Sun S. Controlled synthesis and chemi­

cal conversions of FeO nanoparticles. Angew Chem

Int Ed. 2007;46:6329–6332.

[69] Kim D, Lee N, Park M, et al. Synthesis of uniform

ferrimagnetic magnetite nanocubes. J Am Chem Soc.

2009;131:454–455.

[70] Ge W, Sato R, Wu HL, et al. Simple surfactant

concentration-dependent shape control of polyhedral

Fe3O4 nanoparticles and their magnetic properties.

ChemPhysChem. 2015;16:3200–3205.

[71] Park J, An K, Hwang Y, et al. Ultra-large-scale synth­

eses of monodisperse nanocrystals. Nat Mater.

2004;3:891–895.

[72] Kim J, Wu HL, Hsu S, et al. Nanoparticle approach to

the formation of Sm2Fe17N3 hard magnetic particles.

Chem Lett. 2019;48:1054–1057.

[73] Zhang H, Peng S, Rong C, et al. Chemical synthesis of

hard magnetic SmCo nanoparticles. J Mater Chem.

2011;21:16873–16876.

[74] Shen B, Yu C, Baker AA, et al. Chemical synthesis of

magnetically hard and strong rare earth metal based

nanomagnets. Angew Chem Int Ed. 2019;58:602–606.

[75] Ma Z, Yue M, Liu H, et al. Stabilizing hard magnetic

SmCo5 nanoparticles by N-doped graphitic carbon

layer. J Am Chem Soc. 2020;142:8440–8446.

[76] Shen B, Yu C, Su D, et al. A new strategy to synthesize

anisotropic SmCo5 nanomagnets. Nanoscale. 2018;

10:8735–8740.

[77] Li C, Wu Q, Ma Z, et al. A novel strategy to synthesize

anisotropic SmCo5 particles from Co/Sm(OH)3 com­

posites with special morphology. J Mater Chem C.

2018;6:8522–8527.

[78] Yue N, Li C, Wu Q, et al. A facile synthesis of

anisotropic SmCo5 nanochips with high magnetic

performance. Chem Eng J. 2018;343:1–7.

[79] Ali WB, Wu Q, Ma Z, et al. Chemically synthesizing

PrCo5 single-crystal particles to fabricate highperformance anisotropic nanomagnets. J Magn Magn

Mater. 2020;499:166205.

[80] Lee J, Hwang TY, Kang MK, et al. Synthesis of samar­

ium–cobalt sub-micron fibers and their excellent hard

magnetic properties. Front Chem. 2018;6:18.

[81] Lee J, Hwang TY, Cho HB, et al. Near theoretical

ultra-high magnetic performance of rare-earth

nanomagnets via the synergetic combination of

calcium-reduction and chemoselective dissolution.

Sci Rep. 2018;8:15656.

[82] Silva CRD, Smith S, Shim I, et al. Lanthanide(III)doped magnetite nanoparticles. J Am Chem Soc.

2009;131:6336–6337.

[83] Yang L, Zhou Z, Liu H, et al. Europium-engineered

iron oxide nanocubes with high T1 and T2 contrast

abilities for MRI in living subjects. Nanoscale. 2015;

7:6843–685.

[84] Rice KP, Russek SE, Geiss RH, et al. Temperaturedependent structure of Tb-doped magnetite

nanoparticles. Appl Phys Lett. 2015;106:062409.

[85] Wan H, Rong P, Liu X, et al. Morphological evolu­

tion and magnetic property of rare-earth-doped

hematite nanoparticles: promising contrast agents

for T1-weighted magnetic resonance imaging. Adv

Funct Mater. 2017;27:1606821.

[86] Kowalik P, Mikulski J, Borodziuk A, et al. Yttriumdoped iron oxide nanoparticles for magnetic hyperther­

mia applications. J Phys Chem C. 2020;124:6871–6883.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. Technol. Adv. Mater. 22 (2021) 52

[87] Chaubey GS, Poudyal N, Liu Y, et al. Synthesis of Sm–

Co and Sm–Co/Fe nanocrystals by reductive annealing

of nanoparticles. J Alloys Compd. 2011;509:2132–2136.

[88] Ma Z, Yang S, Zhang T, et al. The chemical synthesis

of SmCo5 single-crystal particles with small size and

high performance. Chem Eng J. 2016;304:993–999.

[89] Ma Z, Zhang T, Jiang C. A facile synthesis of high

performance SmCo5 nanoparticles. Chem Eng J.

2015;264:610–616.

[90] Ma Z, Yue M, Wu Q, et al. Designing shape aniso­

tropic SmCo5 particles by chemical synthesis to reveal

the morphological evolution mechanism. Nanoscale.

2018;10:10377–10382.

[91] Dong Y, Zhang T, Xia X, et al. Dispersible SmCo5

nanoparticles with huge coercivity. Nanoscale.

2019;11:16962–16967.

[92] Palaka S, Yue M, Ma Z, et al. A facile chemical

synthesis of PrCo5 particles with high performance.

J Alloys Compd. 2020;812:151674.

[93] Tang H, Mamakhel MAH, Christensen M. Enhancing

the coercivity of SmCo5 magnet through particle size

control. J Mater Chem C. 2020;8:2109–2116.

[94] Okada S, Takagi K, Ozaki K. Direct preparation of

submicron-sized Sm2Fe17 ultra-fine powders by

reduction-diffusion technique. J Alloys Compd.

2016;663:872–879.

[95] Okada S, Suzuki K, Node E, et al. Preparation of

submicron-sized Sm2Fe17N3 fine powder with high

coercivity by reduction-diffusion process. J Alloys

Compd. 2017;695:1617–1623.

[96] Okada S, Node E, Takagi K, et al. Synthesis of

Sm2Fe17N3 powder having a new level of high coer­

civity by preventing decrease of coercivity in washing

step of reduction diffusion process. J Alloys Compd.

2019;804:237–242.

[97] Hwang TY, Lee J, Kang MK, et al. Synthesis and mag­

netic properties of Sm2Co17 particles using salt-assisted

spray pyrolysis and a reduction-diffusion process. Appl

Surf Sci. 2019;475:986–989.

[98] Liu SF, Lin JH, Qian XL, et al. Synthesis of

NdFe10Mo2 by a reduction–diffusion process.

Chem Mater. 1996;8:2545–2547.

[99] Kelly BG, Unruh KM. Preparation and magnetic

properties of sub-micrometer sized Sm-Co powders

prepared from nanostructured precursor oxides.

IEEE Trans Magn. 2013;49:3349–3352.

[100] Ma Z, Liang J, Ma W, et al. Chemically synthesized

anisotropic SmCo5 nanomagnets with a large energy

product. Nanoscale. 2019;11:12484–12488.

[101] Coey JMD, Sun H. Improved magnetic properties by

treatment of iron-based rare earth intermetallic com­

pounds in anmonia. J Magn Magn Mater. 1990;87:

L251–L254.

[102] Sun H, Coey JMD, Gtani Y, et al. Magnetic properties

of a new series of rare-earth iron nitrides: r2Fe17Ny

(y ~ 2.6). J Phys Condens Matter. 1990;2:6465–6470.

[103] Otani Y, Hurley DPF, Sun H, et al. Magnetic properties

of a new family of ternary rare-earth iron nitrides

R2Fe17N3−δ (invited). J Appl Phys. 1991;69:5584–5589.

[104] Ogura M, Mashiyama A, Akai H. Role of N in the

permanent magnet material Sm2Fe17Nx. J Phys Soc

Jpn. 2015;84:084702.

[105] Christodoulou CN, Takeshita T. Nitrogenation of

Sm2Fe17: mechanism, phases and stability. J Alloys

Compd. 1993;202:173–182.

[106] Buschow KHJ. New developments in hard magnetic

materials. Rep Prog Phys. 1991;54:1123–1213.

T. T. TRINH et al.

[107] Sato T, Ohsuna T, Yano M, et al. Permanent magnetic

properties of NdFe12Nx sputtered films epitaxially

grown on V buffer layer. J Appl Phys. 2017;122:053903.

[108] Hegde H, Rani R, Navarathna A, et al. Film synthesis

and magnetic properties of ThMn12-type Sm(Fe1xTx)12, x ≤ 0.12. J Appl Phys. 1991;70:6345–6347.

[109] Cadieu FJ, Hegde H, Navarathna A, et al. Highenergy product ThMn12 Sm-Fe-T and Sm-Fe perma­

nent magnets synthesized as oriented sputtered films.

Appl Phys Lett. 1991;59:875–877.

[110] Sepehri-Amin H, Tamazawa Y, Kambayashi M, et al.

Achievement of high coercivity in Sm(Fe0.8Co0.2)12

anisotropic magnetic thin film by boron doping. Acta

Materialia. 2020;194:337–342.

[111] Dirba I, Li J, Sepehri-Amin H, et al. Anisotropic,

single-crystalline SmFe12-based microparticles with

high roundness fabricated by jet-milling. J Alloys

Compd. 2019;804:155–162.

[112] Dirba I, Sepehri-Amin H, Ohkubo T, et al.

Development of ultra-fine grain sized SmFe12-based

powders using hydrogenation disproportionation

desorption recombination process. Acta Materialia.

2019;165:373–380.

[113] Dirba I, Harashima Y, Sepehri-Amin H, et al.

Thermal decomposition of ThMn12-type phase and

its optimum stabilizing elements in SmFe12-based

alloys. J Alloys Compd. 2020;813:152224.

[114] Harashima Y, Terakura K, Kino H, et al. Firstprinciples study on stability and magnetism of

NdFe11M and NdFe11MN for M = Ti, V, Cr, Mn,

Fe, Co, Ni, Cu, Zn. J App Phys. 2016;120:203904.

[115] Chen NX, Hao SQ, Wu Y, et al. Phase stability and

site preference of Sm(Fe,T)12. J Magn Magn Mater.

2001;233:169–180.

[116] Moze O, Pareti L, Solzi M, et al. Neutron diffraction and

magnetic anisotropy study of Y-Fe-Ti intermetallic

compounds. Solid State Commun. 1988;66:465–469.

[117] Matsumoto M, Hawai T, Ono K. (Sm, Zr)Fe12−xMx

(M = Zr, Ti, Co) for permanent-magnet applications:

Ab initio material design integrated with experimen­

tal characterization. Phys Rev Appl. 2020;13:064028.

[118] Suzuki S, Kuno T, Urushibata K, et al. A (Nd, Zr)(Fe,

Co)11.5Ti0.5Nx compound as a permanent magnet

material. AIP Adv. 2014;4:117131.

[119] Sakuma N, Suzuki S, Kuno T, et al. Influence of Zr

substitution on the stabilization of ThMn12–type

(Nd1−αZrα)(Fe0.75Co0.25)11.25Ti0.75N1.2−1.4 (α =

0–0.3) compounds. AIP Adv. 2016;6:056023.

[120] Gjoka M, Psycharis V, Devlin E, et al. Effect of Zr

substitution on the structural and magnetic proper­

ties of the series Nd1–xZrxFe10Si2 with the ThMn12

type structure. J Alloys Compd. 2016;687:240–245.

[121] Kobayashi K, Suzuki S, Kuno T, et al. The stability of

newly developed (R,Zr)(Fe,Co)12–xTix alloys for per­

manent magnets. J Alloys Compd. 2017;694:914–920.

[122] Hagiwara M, Sanada N, Sakurada S. Effect of

Y substitution on the structural and magnetic proper­

ties of Sm(Fe0.8Co0.2)11.4Ti0.6. J Magn Magn

Mater. 2018;465:554–558.

[123] Kuno T, Suzuki S, Urushibata K, et al. (Sm,Zr)(Fe,Co)

11.0–11.5Ti1.0–1.5 compounds as new permanent

magnet materials. AIP Adv. 2016;6:025221.

[124] Kuno T, Suzuki S, Urushibata K, et al. Coercivity of

pulverized ThMn12 compounds with a limited amount

of α-(Fe,Co) phase. Mater Trans. 2019;60:1697–1706.

[125] Tozman P, Takahashi YK, Sepehri-Amin H, et al. The

effect of Zr substitution on saturation magnetization in

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. Technol. Adv. Mater. 22 (2021) 53

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

(Sm1–xZrx)(Fe0.8Co0.2)12 compound with the

ThMn12 structure. Acta Materialia. 2019;178:114–121.

Harashima Y, Fukazawa T, Kino H, et al. Effect of

R-site substitution and the pressure on stability of

RFe12: A first-principles study. J Appl Phys. 2018;

124:163902.

Kobayashi K, Furusawa D, Suzuki S, et al. Hightemperature stability of ThMn12 magnet materials.

Mater Trans. 2018;59:1845–1853.

Miyake T, Terakura K, Harashima Y, et al. Firstprinciples study of magnetocrystalline anisotropy

and magnetization in NdFe12, NdFe11Ti, and

NdFe11TiN. J Phys Soc Jpn. 2014;83:043702.

Harashima Y, Terakura K, Kino H, et al. Nitrogen as

the best interstitial dopant among X = B, C, N, O,

and F for strong permanent magnet NdFe11TiX:

first-principles study. Phys Rev B. 2015;92:184426.

Hadjipanayis GC, Gabay AM, Schönhöbel AM,

et al. ThMn12-type alloys for permanent magnets.

Engineering. 2020;6:141–147.

Su MZ, Liu SF, Qian XL, et al. An alternative approach

to the finely crystalline powder of rare earth–transition

metal alloys. J Alloys Compd. 1997;249:229–233.

Cheng QM, Lin JH, Su MZ. On structural and mag­

netic properties of ErFe11WZx, (Z = H, N). Solid

State Commun. 1998;106:455–458.

Cheng QM, Lin JH, Su MZ. On the synthesis and

magnetic properties of LnFe10Si2Zx (Z=N, H and

Ln=Tb, Er). J Alloys Compd. 1998;269:297–300.

Cheng QM, Lin JH, Su MZ. On synthesis and mag­

netic properties of YFe10Si2Zx (Z=H and N). J Alloys

Compd. 1998;275–277:6–9.

Cheng QM, Lin JH, Su MZ. On Synthesis and Magnetic

Properties of Nd(Fe, Mo, Ti)12Zx (Z=N, H). J Alloys

Compd. 1998;280:310–313.

Cheng QM, Lin JH, Su MZ. On the synthesis and

magnetic properties of Nd(Fe,Mo,Ti)12. App Phys

Lett. 1998;73:2500–2502.

Christodoulou CN, Takeshita T. Preparation, struc­

tural and magnetic properties and stability of inter­

stitial Sm2Fe17-carbonitrohydrides. J Alloys Compd.

1993;198:1–24.

Christodoulou CN, Komada N. High coercivity ani­

sotropic Sm2Fe17N3 powders. J Alloys Compd.

1995;222:92–95.

Isnard O, Guillot M, Miraglia S, et al. High field

magnetization measurements of SmFe11Ti and

SmFe11TiH1−δ. J Appl Phys. 1996;79:5542–5544.

Isnard O, Miraglia S, Guillot M, et al. Hydrogen

effects on the magnetic properties of RFe11Ti

compounds. J Alloys Compd. 1998;275–277:637–641.

Morales M, Bacmann M, Wolfers P, et al. Impact of

hydrogen and carbon insertion on the fundamental

characteristics of ErMn12–xFex compounds. J Magn

Magn Mater. 2001;236:83–92.

Isnard O. Influence of hydrogen insertion on the

magnetic properties of the RFe11Ti phases. J Alloys

Compd. 2003;356–357:17–21.

Piquer C, Grandjean F, Isnard O, et al. A magnetic

and Mössbauer spectral study of the spin reorienta­

tion in NdFe11Ti and NdFe11TiH. J Appl Phys.

2004;95:6308–6316.

Isnard O, Pop V. Effect of hydrogen as interstitial

element on the magnetic properties of some iron

rich intermetallic compounds. J Alloys Compd.

2011;509S:S549–S554.

T. T. TRINH et al.

[145] Tereshina IS, Nikitin SA, Pankratov NY, et al. Magnetic

anisotropy of LuFe11Ti compound and its hydride and

nitride. J Magn Magn Mater. 2001;231:213–218.

[146] Tereshina IS, Pankratov NY, Tereshina EA, et al.

Magnetocrystalline anisotropy of hydrogenated and

nitrogenated rare-earth intermetallic compound

SmFe11Ti. Phys Met Metall. 2005;99:S46–S49.

[147] Tereshina IS, Kostyuchenko NV, Tereshina-Chitrova

EA, et al. ThMn12-type phases for magnets with low

rare-earth content: crystal-field analysis of the full

magnetization process. Sci Rep. 2018;8:3595.

[148] Kneller EF, Hawig R. The exchange-spring magnet:

a new material principle for permanent magnets.

IEEE Trans Magn. 1991;27:3588–3600.

[149] Skomski R, Coey JMD. Giant energy product in

nanostructured two-phase magnets. Phys Rev B.

1993;48:15812–15816.

[150] O’Donnell K, Coey JMD. Characterization of hard mag­

netic two-phase mechanically alloyed Sm2Fe17N3/α-Fe

nanocomposites. J Appl Phys. 1997;81:6310–6321.

[151] Schrefl T, Fischer R, Fidler J, et al. Two- and

three-dimensional calculation of remanence enhance­

ment of rare-earth based composite magnets

(invited). J Appl Phys. 1994;76:7053–7058.

[152] Zeng H, Li J, Liu JP, et al. Exchange-coupled nano­

composite magnets by nanoparticle self-assembly.

Nature. 2002;420:395–398.

[153] Yu L, Yang C, Hou Y. Controllable Nd2Fe14B/α-Fe

nanocomposites: chemical synthesis and magnetic

properties. Nanoscale. 2014;6:10638–10642.

[154] Yu LQ, Zhang YP, Yang Z, et al. Chemical synthesis

of Nd2Fe14B/Fe3B nanocomposites. Nanoscale.

2016;8:12879–12882.

[155] Hou Y, Sun S, Rong C, et al. SmCo5/Fe nanocompo­

sites synthesized from reductive annealing of oxide

nanoparticles. Appl Phys Lett. 2007;91:153117.

[156] Shen B, Mendoza-Garcia A, Baker SE, et al.

Stabilizing Fe nanoparticles in the SmCo5 matrix.

Nano Lett. 2017;17:5695–5698.

[157] Yang C, Jia L, Wang S, et al. Single domain

SmCo5@Co exchange-coupled magnets prepared

from core/shell Sm[Co(CN)6] 4H2O@GO particles:

a novel chemical approach. Sci Rep. 2013;3:3542.

[158] Ma Z, Zhang T, Jiang C. Exchange-coupled SmCo5/

Co nanocomposites synthesized by a novel strategy.

RSC Adv. 2015;5:89128–89132.

[159] Teranishi T, Wachi A, Kanehara M, et al. Conversion of

anisotropically phase-segregated Pd/γ-Fe2O3 nanopar­

ticles into exchange-coupled fct-FePd/α-Fe nanocom­

posite magnets. J Am Chem Soc. 2008;130:4210–4211.

[160] Sakuma N, Ohshima T, Shoji T, et al. Exchange cou­

pling interaction in L10-FePd/α-Fe nanocomposite

magnets with large maximum energy products. ACS

Nano. 2011;5:2806–2814.

[161] Matsumoto K, Sato R, Trinh TT, et al. Formation of

strong L10-FePd/α-Fe nanocomposite magnets by

visualizing efficient exchange coupling. Nanoscale

Adv. 2019;1:2598–2605.

[162] Balasubramanian B, Mukherjee P, Skomski R, et al.

Magnetic nanostructuring and overcoming Brown’s

paradox to realize extraordinary high-temperature

energy products. Sci Rep. 2014;4:6265.

[163] Liu X, He S, Qiu JM, et al. Nanocomposite

exchange-spring magnet synthesized by gas phase

method: from isotropic to anisotropic. Appl Phys

Lett. 2011;98:222507.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. Technol. Adv. Mater. 22 (2021) 54

[164] Takagi K, Nakayama H, Ozaki K, et al. Fabrication of

high-performance Sm–Fe–N isotropic bulk magnets by

a combination of high-pressure compaction and current

sintering. J Magn Magn Mater. 2012;324:1337–1341.

T. T. TRINH et al.

[165] Ogawa D, Xu XD, Takahashi YK, et al. Emergence of

coercivity in Sm(Fe0.8Co0.2)12 thin films via eutectic

alloy grain boundary infiltration. Scr Mater. 2019;

164:140–144.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る