リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation of Excited CH(A^2Δ, B^2Σ^-,and C^2Σ^+) Radicals by Collisions of Metastable Ne(3^P_0,2) Atoms with Simple C1~C3 Aliphatic Hydrocarbons in a Flowing Afterglow」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation of Excited CH(A^2Δ, B^2Σ^-,and C^2Σ^+) Radicals by Collisions of Metastable Ne(3^P_0,2) Atoms with Simple C1~C3 Aliphatic Hydrocarbons in a Flowing Afterglow

TSUJI, Masaharu 辻, 正治 ツジ, マサハル KOMATSU, Takahiro 小松, 孝弘 コマツ, タカヒロ UTO, Keiko 宇都, 慶子 ウト, ケイコ HAYASHI, Jun-Ichiro 林, 潤一郎 ハヤシ, ジュンイチロウ TSUJI, Takeshi 辻, 剛志 ツジ, タケシ 九州大学 DOI:https://doi.org/10.15017/4763149

2022.02

概要

CH(A2Δ−X2πr B2Σ−−X2πr, and C2Σ+−X2πr) emission systems have been observed by dissociative excitation of such simple C1~C3 aliphatic hydrocarbons as CH4, C2H6, C2H4, and C3H4 by collisions with metastable Ne(3P2:16.62 and 3P0:16.72 eV) atoms in the flowing afterglow. The emission rate constants of CH(A,B,C) from CH4, C2H6, C2H4, and C3H4 were determined to be 0.082, 0.039, 0.38, and 0.59 × 10-13 cm3 molecule-1 s-1, respectively. The CH(A) state was the major CH* product in all reactions, which occupied 64−92% of CH(A,B,C) products. The nascent vibrational and rotational distributions of CH(A:𝑣'=0–2 and B:𝑣'=0) were determined. The rotational distributions of CH(A:𝑣'=0–2 and B:𝑣'=0) states were expressed by single Boltzmann temperatures of 1700–4600 K and 2500–5500 K, respectively. The CH(A:𝑣'=0 and B:𝑣'=0) states from C3H4 were more rotationally excited than those from the other aliphatic hydrocarbons.

この論文で使われている画像

参考文献

1) N. Mutsukura and K. Miyatani, Diamond Relat. Mater., 4, 342 (1995).

2) P. Yang , S. C. H . Kwok, R. K. Y. Fu , Y. X. Leng, J. Wang, G. J. Wan, N. Huang, Y. Leng, and P. K. Chu, Surf. Coat. Tech., 177/178, 747 (2004).

3) S. Avtaeva and V. Gorokhovsky, Plasma Chem. Plasma Process., 41, 815 (2021).

4) R. S. F. Chang, D. W. Setser, and G. W. Taylor, Chem. Phys., 25, 201 (1978).

5) D. H. Winicur, J. L. Hardwick, and S. N. Murphy, Comb. Flame, 53, 93 (1983).

6) D. H. Winicur and J. L. Hardwick, Chem. Phys., 94, 157 (1985).

7) L. G. Piper, 1. E. Velazco, and D. W. Setser, J. Chem. Phys., 59, 3323 (1973).

8) T. Ueno, A. Yokoyama, S. Takao, and Y. Hatano, Chem. Phys., 45, 261 (1980).

9) M. Tsuji, K. Kobarai, H. Obase, H. Kouno, and Y. Nishimura, J. Chem. Phys., 94, 277 (1991).

10) M. Tsuji, T. Komatsu, M. Tanaka, M. Nakamura, Y. Nishimura, and H. Obase, Chem. Lett., 26, 359 (1997).

11) M. Tsuji, T. Komatsu, K. Uto, J.-I. Hayashi, and T. Tsuji, Eng. Sci. Rep., Kyushu Univ., 43, 8 (2021).

12) M. Tsuji, T. Komatsu, K. Uto, J.-I. Hayashi, and T. Tsuji, Eng. Sci. Rep., Kyushu Univ., 43, 23 (2021).

13) H. Obase, M. Tsuji, and Y. Nishimura, Chem. Phys., 74, 89 (1983).

14) H. L. Snyder, B. T. Smith, T. P. Parr, and R. M. Martin, Chem. Phys., 65, 397 (1982).

15) NIST Chemistry WebBook, NIST Standard Reference Database, Number 69 (2018): http://webbook.nist.gov/chemistry.

16) K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules ”, Van Nostrand Reinhold, New York (1979).

17) K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata: “Handbook of He Photoelectron Spectra of Fundamental Organic Molecules. Ionization Energies, Ab Initio Assignments, and Valence Electronic Structure for 200 Molecules ”, Japan Scientific Societies Press, Tokyo und Halstead Press, New York (1981).

18) F. C. Fehsenfeld, J. Chem. Phys., 53, 2000 (1970).

19) M. Tsuji, N. Kaneko, and Y. Nishimura, J. Chem. Phys., 101, 7451 (1994).

20) P. Tosi, D. Bassi, B. Brunetti, and F. Vecchiocattivi, Int. J. Mass Spectrom. Ion Process., 149/150, 345 (1995).

21) J. Carozza and R. Anderson, J. Opt. Soc. Amer., 118 (1977).

22) M. Ortiz and J. Campos, Physica B+C, 114, 135 (1982).

23) M. Tokeshi, K. Nakashima, and T. Ogawa, Chem. Phys., 203, 257 (1996).

24) D. L. King, L. G. Piper, and D. W. Setser, J. Chern. Soc. Faraday Trans. II, 73, 177 (1977).

25) M. Tsuji, H. Kouno, H. Ujita, and Y. Nishimura, J. Chem. Phys., 96, 6746 (1992).

26) M. Tsuji, K. Kobarai, S. Yamaguchi, H. Obase, K. Yamaguchi, and Y. Nishimura, Chem. Phys. Lett., 155, 481 (1989).

27) M. Tsuji, K. Kobarai, S. Yamaguchi, and Y. Nishimura, Chem. Phys. Lett., 158, 470 (1989).

28) M. Tsuji, K. Kobarai, and Y. Nishimura, J. Chem. Phys., 93, 3133 (1990).

29) M. Tsuji, K. Kobarai, S. Yamaguchi, H. Obase, and Y. Nishimura, Chem. Phys. Lett., 166, 485 (1990).

30) M. Tsuji, K. Kobarai, H. Kouno, H. Obase, and Y. Nishimura, Jpn. J. Appl. Phys., 30, 862 (1991).

31) Y. Hatano, Bull. Chem. Soc. Jpn., 41, 1126 (1968).

32) J. Berkowitz, “Photoabsorption, Photoionization and Photoelectron Spectroscopy ”, Academic Press, New York. (1979).

33) K. Kameta, S. Machida, M. Kitajima, M. Ukai, N. Kouchi, Y. Hatano, and K. Ito, J. Electron Spectrosc. Relat. Phenom., 79, 391 (1996).

34) D. M. P. Holland, D. A. Shaw, M. A. Hayes, L. G. Shpinkova, E. E. Rennie, L. Karlsson, P. Baltzer, and B. Wannberg, Chem. Phys., 219, 91 (1997).

35) D. M. P. Holland and D. A. Shaw, Chem. Phys., 243, 333 (1999).

36) K. Kameta, N. Kouchi, M. Ukai, and Y. Hatano, J. Electron Spectrosc. Relat. Phenom., 123, 225 (2002).

37) M. Kato, K. Kameta, T. Odagiri, N. Kouchi, and Y. Hatano, J. Phys. B: At. Mol. Opt. Phys., 35, 4383 (2002).

38) J. O'Reilly, S. Douin, S. Boye, N. Shafizadeh, and D. Gauyacq, J. Chem. Phys., 119, 820 (2003). C2H4

39) K. Alnama, S. Boyé, S. Douin, F. Innocenti, J. O’Reilly, A.-L. Roche, N. Shafizadeh, L. Zuin, and D. Gauyacq, Phys. Chem. Chem. Phys., 6, 2093 (2004).

40) T. Ibuki, G. Cooper, and C. E. Brion, Chem. Phys., 129, 295 (1989).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る