リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「CD4(+) Resident Memory T Cells Mediate Long-Term Local Skin Immune Memory of Contact Hypersensitivity in BALB/c Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

CD4(+) Resident Memory T Cells Mediate Long-Term Local Skin Immune Memory of Contact Hypersensitivity in BALB/c Mice

Murata, Akihiko Hayashi, Shin-ichi 鳥取大学 DOI:10.3389/fimmu.2020.00775

2020.05.19

概要

In allergic contact dermatitis (ACD) and contact hypersensitivity (CHS), the healed skin shows greater swelling than the naïve skin in the same individual upon re-exposure to the same hapten. This “local skin memory” (LSM) in healed skin was maintained for a prolonged period of time and mediated by skin CD8+-resident memory T (TRM) cells in C57BL/6 mice. However, the number of CD4+ T cells is elevated in ACD-healed human skin, and the contribution of CD4+ TRM cells to the formation of LSM currently remains unclear. We herein demonstrated that immediately after CHS subsided, the healed skin in BALB/c mice showed an accumulation of hapten-specific CD4+ and CD8+ TRM cells, with a predominance of CD4+ TRM cells. The presence of CD4+ or CD8+ TRM cells in the healed skin was sufficient for the induction of a flare-up reaction upon a re-challenge. The CD4+ and CD8+ TRM cells both produced interferon-g and tumor necrosis factor early after the re-challenge. Moreover, while CD8+ TRM cells gradually decreased over time and were eventually lost from the healed skin at 40–51 weeks after the resolution of CHS, the CD4+ TRM cell numbers remained elevated during this period. The present results indicate that the long-term maintenance of LSM is mediated by CD4+ TRM cells, and thus CD4+ TRM cells are an important target for the treatment of recurrent human ACD.

この論文で使われている画像

参考文献

13. Masopust D, Soerens AG. Tissue-Resident T cells and other resident

leukocytes. Annu Rev Immunol. (2019) 37:521–46. doi: 10.1146/annurevimmunol-042617-053214

14. Szabo PA, Miron M, Farber DL. Location, location, location: Tissue resident

memory T cells in mice and humans. Sci Immunol. (2019) 4:eaas9673.

doi: 10.1126/sciimmunol.aas9673

15. Clark RA. Resident memory T cells in human health and disease. Sci Transl

Med. (2015) 7:269rv261. doi: 10.1126/scitranslmed.3010641

16. Ho AW, Kupper TS. T cells and the skin: from protective immunity

to inflammatory skin disorders. Nat Rev Immunol. (2019) 19:490–502.

doi: 10.1038/s41577-019-0162-3

17. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The

developmental pathway for CD103(+)CD8+ tissue-resident memory T cells

of skin. Nat Immunol. (2013) 14:1294–301. doi: 10.1038/ni.2744

18. Iborra S, Martinez-Lopez M, Khouili SC, Enamorado M, Cueto

FJ, Conde-Garrosa R, et al. Optimal generation of tissue-resident

but not circulating memory t cells during viral infection requires

crosspriming by DNGR-1(+) dendritic cells. Immunity. (2016) 45:847–60.

doi: 10.1016/j.immuni.2016.08.019

19. Bergsbaken T, Bevan MJ, Fink PJ. Local inflammatory cues regulate

differentiation and persistence of CD8(+) tissue-resident memory T cells. Cell

Rep. (2017) 19:114–24. doi: 10.1016/j.celrep.2017.03.031

20. Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, Newman

DM, et al. T-box transcription factors combine with the cytokines TGF-beta

and IL-15 to control tissue-resident memory t cell fate. Immunity. (2015)

43:1101–11. doi: 10.1016/j.immuni.2015.11.008

21. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga

S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident

memory T cell homeostasis and lymphoma. Nat Med. (2015) 21:1272–9.

doi: 10.1038/nm.3962

22. Mani V, Bromley SK, Aijo T, Mora-Buch R, Carrizosa E, Warner RD,

et al. Migratory DCs activate TGF-beta to precondition naive CD8(+)

T cells for tissue-resident memory fate. Science. (2019) 366:eaav5728.

doi: 10.1126/science.aav5728

23. Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C,

Boukhedouni N, et al. Vitiligo skin is imprinted with resident memory

cd8 t cells expressing CXCR3. J Invest Dermatol. (2018) 138:355–64.

doi: 10.1016/j.jid.2017.08.038

24. Klicznik MM, Morawski PA, Hollbacher B, Varkhande SR, Motley SJ, KuriCervantes L, et al. Human CD4(+)CD103(+) cutaneous resident memory T

cells are found in the circulation of healthy individuals. Sci Immunol. (2019)

4:aav8995. doi: 10.1126/sciimmunol.aav8995

1. Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and imaging

approaches reveal pro-inflammatory and immunoregulatory roles of

mast cells in contact hypersensitivity. Front Immunol. (2018) 9:1275.

doi: 10.3389/fimmu.2018.01275

2. Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of

the skin. Nat Rev Immunol. (2019) 19:19–30. doi: 10.1038/s41577-018-0084-5

3. Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the

induction of allergic contact dermatitis. Nat Rev Immunol. (2012) 12:114–24.

doi: 10.1038/nri3150

4. Rustemeyer T, van Hoogstraten IMW, von Blomberg BME, Gibbs S, Scheper

RJ. Mechanisms of irritant and allergic contact dermatitis. In: Johansen JD,

Frosch PJ, Lepoittevin JP, editors. Contact Dermatitis. Berlin; Heidelberg:

Springer (2011). p. 43–90.

5. Fukushiro S, Nakagawa S, Gotoh M, Koshizawa M, Tanioku K. The

distribution of antigen in flare up reaction in contact sensitivity to DNCB.

Immunology. (1978) 34:549–53.

6. Scheper RJ, von Blomberg M, Boerrigter GH, Bruynzeel D, van Dinther A,

Vos A. Induction of immunological memory in the skin. Role of local T cell

retention. Clin Exp Immunol. (1983) 51:141–8.

7. Yamashita N, Natsuaki M, Sagami S. Flare-up reaction on murine contact

hypersensitivity. I. Description of an experimental model: rechallenge system.

Immunology. (1989) 67:365–9.

8. Natsuaki M, Yamashita N, Sagami S. Reactivity and persistence of local

immunological memory on murine contact hypersensitivity. J Dermatol.

(1993) 20:138–43. doi: 10.1111/j.1346-8138.1993.tb03848.x

9. Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, Desmarais C,

et al. Common clonal origin of central and resident memory T cells

following skin immunization. Nat Med. (2015) 21:647–53. doi: 10.1038/

nm.3860

10. Gimenez-Rivera VA, Siebenhaar F, Zimmermann C, Siiskonen H, Metz M,

Maurer M. Mast cells limit the exacerbation of chronic allergic contact

dermatitis in response to repeated allergen exposure. J Immunol. (2016)

197:4240–6. doi: 10.4049/jimmunol.1600236

11. Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, Grande S, et al.

Inhibitory checkpoint receptors control CD8(+) resident memory T cells

to prevent skin allergy. J Allergy Clin Immunol. (2019) 143:2147–57.

doi: 10.1016/j.jaci.2018.11.048

12. Mackay LK, Kallies A. Transcriptional regulation of tissue-resident

lymphocytes. Trends Immunol. (2017) 38:94–103. doi: 10.1016/j.it.2016.

11.004

Frontiers in Immunology | www.frontiersin.org

16

May 2020 | Volume 11 | Article 775

Long-Term LSM by CD4+ TRM

Murata and Hayashi

42. Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, Kashem SW,

et al. Stromal cells control the epithelial residence of DCs and memory T

cells by regulated activation of TGF-beta. Nat Immunol. (2016) 17:414–21.

doi: 10.1038/ni.3396

43. Schmidt JD, Ahlstrom MG, Johansen JD, Dyring-Andersen B, Agerbeck C,

Nielsen MM, et al. Rapid allergen-induced interleukin-17 and interferongamma secretion by skin-resident memory CD8(+) T cells. Contact

Dermatitis. (2017) 76:218–27. doi: 10.1111/cod.12715

44. Liu J, Harberts E, Tammaro A, Girardi N, Filler RB, Fishelevich R, et al. IL-9

regulates allergen-specific Th1 responses in allergic contact dermatitis. J Invest

Dermatol. (2014) 134:1903–11. doi: 10.1038/jid.2014.61

45. Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses

mediated by dendritic cells and mast cells. JCI Insight. (2019) 4:e123947.

doi: 10.1172/jci.insight.123947

46. Slutter B, Van Braeckel-Budimir N, Abboud G, Varga SM, Salek-Ardakani

S, Harty JT. Dynamics of influenza-induced lung-resident memory T cells

underlie waning heterosubtypic immunity. Sci Immunol. (2017) 2:eaag2031.

doi: 10.1126/sciimmunol.aag2031

47. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Longlived epithelial immunity by tissue-resident memory T (TRM) cells in the

absence of persisting local antigen presentation. Proc Natl Acad Sci USA.

(2012) 109:7037–42. doi: 10.1073/pnas.1202288109

48. Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, Carbone FR, et al.

Persistence of skin-resident memory T cells within an epidermal niche. Proc

Natl Acad Sci USA. (2014) 111:5307–12. doi: 10.1073/pnas.1322292111

49. Beura LK, Fares-Frederickson NJ, Steinert EM, Scott MC, Thompson

EA, Fraser KA, et al. CD4(+) resident memory T cells dominate

immunosurveillance and orchestrate local recall responses. J Exp Med. (2019)

216:1214–29. doi: 10.1084/jem.20181365

50. Steinbach K, Vincenti I, Merkler D. Resident-Memory T Cells in tissuerestricted immune responses: for better or worse? Front Immunol. (2018)

9:2827. doi: 10.3389/fimmu.2018.02827

51. Park CO, Kupper TS. The emerging role of resident memory T cells in

protective immunity and inflammatory disease. Nat Med. (2015) 21:688–97.

doi: 10.1038/nm.3883

52. Cheuk S, Wiken M, Blomqvist L, Nylen S, Talme T, Stahle M, et al. Epidermal

Th22 and Tc17 cells form a localized disease memory in clinically healed

psoriasis. J Immunol. (2014) 192:3111–20. doi: 10.4049/jimmunol.1302313

53. Mizukawa Y, Yamazaki Y, Teraki Y, Hayakawa J, Hayakawa K, Nuriya

H, et al. Direct evidence for interferon-gamma production by effectormemory-type intraepidermal T cells residing at an effector site of

immunopathology in fixed drug eruption. Am J Pathol. (2002) 161:1337–47.

doi: 10.1016/s0002-9440(10)64410-0

54. Teraki Y, Shiohara T. IFN-gamma-producing effector CD8+ T cells and IL10-producing regulatory CD4+ T cells in fixed drug eruption. J Allergy Clin

Immunol. (2003) 112:609–15. doi: 10.1016/s0091-6749(03)01624-5

55. Mizukawa Y, Yamazaki Y, Shiohara T. In vivo dynamics of intraepidermal

CD8+ T cells and CD4+ T cells during the evolution of fixed drug eruption.

Br J Dermatol. (2008) 158:1230–8. doi: 10.1111/j.1365-2133.2008.08516.x

25. Lauron EJ, Yang L, Harvey IB, Sojka DK, Williams GD, Paley MA, et al.

Viral MHCI inhibition evades tissue-resident memory T cell formation and

responses. J Exp Med. (2019) 216:117–32. doi: 10.1084/jem.20181077

26. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et al.

Human skin is protected by four functionally and phenotypically discrete

populations of resident and recirculating memory T cells. Sci Transl Med.

(2015) 7:279ra239. doi: 10.1126/scitranslmed.3010302

27. Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, Effern M, et al. Tissueresident memory CD8(+) T cells promote melanoma-immune equilibrium in

skin. Nature. (2019) 565:366–71. doi: 10.1038/s41586-018-0812-9

28. Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, Marquardt

N, et al. CD49a expression defines tissue-resident CD8(+) T cells poised

for cytotoxic function in human skin. Immunity. (2017) 46:287–300.

doi: 10.1016/j.immuni.2017.01.009

29. Collins N, Jiang X, Zaid A, Macleod BL, Li J, Park CO, et al. Skin

CD4(+) memory T cells exhibit combined cluster-mediated retention

and equilibration with the circulation. Nat Commun. (2016) 7:11514.

doi: 10.1038/ncomms11514

30. Park SL, Zaid A, Hor JL, Christo SN, Prier JE, Davies B, et al.

Local proliferation maintains a stable pool of tissue-resident memory

T cells after antiviral recall responses. Nat Immunol. (2018) 19:183–91.

doi: 10.1038/s41590-017-0027-5

31. Park CO, Fu X, Jiang X, Pan Y, Teague JE, Collins N, et al. Staged

development of long-lived T-cell receptor alphabeta TH17 resident memory

T-cell population to Candida albicans after skin infection. J Allergy Clin

Immunol. (2018) 142:647–62. doi: 10.1016/j.jaci.2017.09.042

32. Hirai T, Zenke Y, Yang Y, Bartholin L, Beura LK, Masopust D, et al.

Keratinocyte-Mediated activation of the cytokine TGF-beta maintains skin

recirculating memory CD8(+) T cells. Immunity. (2019) 50:1249–61.e1245.

doi: 10.1016/j.immuni.2019.03.002

33. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, et al.

Different patterns of peripheral migration by memory CD4+ and CD8+ T

cells. Nature. (2011) 477:216–9. doi: 10.1038/nature10339

34. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin infection

generates non-migratory memory CD8+ T(RM) cells providing global skin

immunity. Nature. (2012) 483:227–31. doi: 10.1038/nature10851

35. Moed H, Boorsma DM, Tensen CP, Flier J, Jonker MJ, Stoof TJ, et al. Increased

CCL27-CCR10 expression in allergic contact dermatitis: implications for local

skin memory. J Pathol. (2004) 204:39–46. doi: 10.1002/path.1619

36. Murphy KM, Heimberger AB, Loh DY. Induction by antigen of intrathymic

apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science. (1990)

250:1720–3. doi: 10.1126/science.2125367

37. Bergstresser PR, Tigelaar RE, Dees JH, Streilein JW. Thy-1 antigen-bearing

dendritic cells populate murine epidermis. J Invest Dermatol. (1983) 81:286–8.

doi: 10.1111/1523-1747.ep12518332

38. Lee HC, Tomiyama K, Ye SK, Kawai K, Ikuta K. Seeding of dendritic

epidermal T cells in the neonatal skin is reduced in 129 strain of mice.

Immunol Lett. (2002) 81:211–6. doi: 10.1016/s0165-2478(02)00007-x

39. Holz LE, Prier JE, Freestone D, Steiner TM, English K, Johnson DN, et al.

CD8(+) T Cell activation leads to constitutive formation of liver tissueresident memory T cells that seed a large and flexible niche in the liver. Cell

Rep. (2018) 25:68–79.e64. doi: 10.1016/j.celrep.2018.08.094

40. Beura LK, Mitchell JS, Thompson EA, Schenkel JM, Mohammed J,

Wijeyesinghe S, et al. Intravital mucosal imaging of CD8(+) resident

memory T cells shows tissue-autonomous recall responses that amplify

secondary memory. Nat Immunol. (2018) 19:173–82. doi: 10.1038/s41590-01

7-0029-3

41. Mannoor MK, Halder RC, Morshed SR, Ariyasinghe A, Bakir HY, Kawamura

H, et al. Essential role of extrathymic T cells in protection against malaria. J

Immunol. (2002) 169:301–6. doi: 10.4049/jimmunol.169.1.301

Frontiers in Immunology | www.frontiersin.org

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Murata and Hayashi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

17

May 2020 | Volume 11 | Article 775

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る