リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Petrology, Zircon U-Pb Geochronology, and REE Geochemistry of Granulites from the Lützow-Holm Complex, East Antarctica : Implications for the P-T-t Evolution of Gondwana Collisional Orogens」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Petrology, Zircon U-Pb Geochronology, and REE Geochemistry of Granulites from the Lützow-Holm Complex, East Antarctica : Implications for the P-T-t Evolution of Gondwana Collisional Orogens

高村, 悠介 筑波大学

2020.07.21

概要

Zircon U-Pb geochronology is known as one of the best dating tools having been widely applied to various magmatic, metamorphic, and detrital grains. Particularly, the application of micro-analytical instruments such as SHRIMP and LA-ICP-MS to the dating technique enables us to precisely evaluate complex geological processes recorded in single zircon grains. For the determination of metamorphic ages, rare earth element (REE) patterns of zircons/monazites and coexisting minerals, particularly garnet, are often combined with U-Pb data to infer prograde, peak, and retrograde ages, which help our understanding of metamorphic processes in convergent plate margins. This study thus applies the technique in combination with petrological data to high-grade metamorphic rocks from the East African-Antarctic Orogeny (EAAO) formed through complex collisional events during late Neoproterozoic-Cambrian Gondwana amalgamation, and unravel pressure-temperature-time (P-T-t) evolution of the region. This study focuses on the Lützow-Holm Complex (LHC), East Antarctica, which is regarded as one of the regional high-grade metamorphic terranes in the EAAO. Previous studies suggested that the metamorphic grade systematically increases from the northeastern part (amphibolite facies) to the southwestern part (granulite facies) of the complex. Recent studies have proposed two stages of metamorphism in this area, however, these studies mainly focused on the southwestern granulite-facies area. This study particularly focused on high-grade rocks from Tenmondai Rock area, one of the exposures in the amphibolite to lower granulite transition zone along the Prince Olav Coast, northeastern LHC. In addition, a granulite from Sudare Rock area which is located in the southern part of the Lützow-Holm Bay is also examined to evaluate P-T-t paths throughout the LHC.

In this study, three mafic granulites (samples Ts11021003A, Ts11021007H, and Ts11021106A) and two amphibolites (Ts11021001A and Ts11021006B) collected from Tenmondai Rock, and one mafic granulite (Ts11011002A) from Sudare Rock have been analyzed. Skeletal garnet in sample Ts11021106A surrounded by orthopyroxene + plagioclase symplectite suggests the progress of reactions such as garnet + quartz → orthopyroxene + plagioclase, which indicate near-isothermal decompression probably along a clockwise P-T path. Similar symplectite textures are also present in sample Ts11011002A. Whole-rock geochemical data show characteristic Nb and Ti negative anomalies in spider diagrams, depletion of HREE, and Th-enriched characters in some discrimination diagrams, suggesting a magmatic arc-related setting. The application of phase equilibrium modeling in the system NCKFMASHTO for the garnet-bearing mafic granulite (Ts11021106A) indicates that the peak assemblage (garnet + orthopyroxene + plagioclase + ilmenite + quartz + K-feldspar and melt) was stable at a P-T range of 850-900°C and 7.5-8.5 kbar. The condition is consistent with the result of geothermobarometry (805-845°C at 8 kbar and 6.5-9.3 kbar at 800°C), which also confirms that the area underwent peak granulite-facies metamorphism, higher than previous results (750°C and 7.2-7.5 kbar). The application of geothermobarometry to the sample from Sudare Rock (Ts11011002A) yielded granulite-facies peak P-T conditions. In addition, U-Pb dating of zircons in mafic granulites from Tenmondai Rock (Ts11021106A) and Sudare Rock (Ts11011002A) were performed by LA-ICP-MS, and yielded similar middle Neoproterozoic ages (ca. 800-700 Ma) from igneous zircon cores and late Neoproterozoic to Cambrian ages (ca. 650-500 Ma) from metamorphic rims and/or structureless grains. Metamorphic zircons in sample Ts11021106A (Tenmondai Rock) show enriched normalized-Lu/Gd values and negative Eu/Eu* (=EuN/(SmN×GdN)1/2) anomalies for ca. 520-510 Ma zircon. These results suggest the consumption of garnet and the growth of plagioclase caused by the breakdown of garnet and formation of orthopyroxene + plagioclase symplectite during near-isothermal decompression. In sample Ts11011002A (Sudare Rock), although no Eu/Eu* anomaly was observed, the normalized Lu/Gd values increase at ca. 560-510 Ma. This might suggest that the timing of near-isothermal decompression caused by rapid exhumation in Sudare Rock could be earlier than that of Tenmondai Rock.

The published U-Pb and REE data of zircons in mafic rocks with similar symplectite textures from the Highland Complex, Sri Lanka, show older zircon ages of ca. 560-520 Ma with higher Lu/Gd values. This indicates a correlation between the central LHC and the Highland Complex, and is consistent with previous studies that inferred petrological, geochemical and geochronological similarities between the two complexes. The obtained P-T-t path can be well compared with model P-T-t path predicted by channel flow as a potentially dominant mechanism of rapid exhumation of Gondwana collisional orogen.

参考文献

Asami, M., Suzuki, K., Adachi, M., 1997. Th, U and Pb analytical data and CHIME dating of monazites from metamorphic rocks of the Rayner, Lützow-Holm, Yamato-Belgica and Sør Rondane Complexes, East Antarctica. Proc. NIPR Symp. Antarct. Geosci. 10, 130–152.

Aranovich, L.Y., Berman, R.G., 1997. A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO-Al2O3-SiO2 orthopyroxene. Amer. Mineral. 82 (3-4), 345–353.

Baba, S., Hokada, T., Kamei, A., Kitano, I., Motoyoshi, Y., Nantasin, P., Setiawan, N.I., Dashbaatar, D., 2019. New insights into the metamorphic evolution of the Lützow-Holm Complex along the Prince Plav Coast, East Antarctica. Abstract Volume, IAGR Conference series No. 25, pp. 1–2.

Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742.

Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan Orogen. J. Geophys. Res. 109, B06406.

Bollinger, L., Henry, P., Avouac, J.P., 2006. Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71.

Buick, I.S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., Hand, M., 2010. Constraints on the proterozoic evolution of the Aravalli-Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120, 511–528.

Cabanis, B., Lecolle, M., 1989. Le diagramme La/100-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus demelange et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences Serie 2 (309), 2023–2029.

Collins, A.S., Pisarevsky, S.A., 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Sci. Rev. 71, 229–270.

Collins, A.S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D.E., Hand, M., 2007a. Passage through India: the Mozambique Ocean suture, high pressure granulites and the Palghat-Cauvery Shear System. Terra Nova 19, 141–147.

Collins, A.S., Santosh, M., Braun, I., Clark, C., 2007b. Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Res. 155, 125–138.

Collins, A.S., Clark, C., Plavsa, D., 2014. Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res. 25, 190–203.

Dharmapriya, P.L., Malaviarachchi, S.P.K., Kriegsman, L.M., Galli, A., Sajeev, K., Zhang, C., 2017. New constraints on the P-T path of HT/UHT metapelites from the Highland Complex of Sri Lanka. Geosci. Front. 8, 1405–1430.

Dunkley, D.J., 2007. Isotopic zonation in zircon as a recorder of progressive metamorphism. Goldschmidt Conference Abstracts, Geochimica et Cosmochimica Acta, vol. A224.

Dunkley, D.J., Shiraishi, K., Motoyoshi, Y., Tsunogae, T., Miyamoto, T., Hiroi, Y., Carson, C.J., 2014. Deconstructing the Lützow-Holm Complex with zircon geochronology. Abstract of 7th international SHRIMP workshop program, 116–121.

Eggins, S.M., Kinsley, L.P.J., Shelley, J.M.G., 1998. Deposition and element fractionation processes of occurring during atmospheric pressure sampling for analysis by ICP-MS. Appl. Surf. Sci. 129, 278–286.

Ellis, D.J., Green, D.D. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71, 13– 22.

Ferry, J.M., Spear, F.S., 1981. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Mineral. Petrol. 66, 113–117.

Fraser, G., McDougall, L., Ellis, D.J., Williams, I.S., 2000. Timing and rate of Isothermal decompression in Pan-African granulites from Rundvågshetta, East Antarctica. J. Metamorph. Geol. 18, 441–454.

Goldman, D.S., Albee, A.L., 1977. Correlations of Mg/Fe partitioning between garnet and biotite with 18O/16O partitioning between quartz and magnetite. Am. J. Sci. 277, 413–420.

Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. L. Metamorph. Geol. 34, 845–869.

Harley, S.L., 1989. The origin of granulites: a metamorphic perspective. Geol. Mag. 126, 215–247.

He, X.F., Hand, M., Santosh, M., Kelsey, D. E.,Morrissey, L. J., Tsunogae, T., 2018. Long‐lived metamorphic P–T–t evolution of the Highland Complex, Sri Lanka: Insights from mafic granulites. Precambrian Res. 316, 227–243.

Henry, P., LePichon, X., Goffé, B., 1997. Kinematic, thermal and petrological model of the Himalayas: Constraints related to metamorphism within the underthrust Indian crust and topographic evolution. Tectonophysics 273, 31–56.

Hiroi, Y., Shiraishi, K., Nakai, Y., Kano, T., Yoshikura, S., 1983a. Geology and petrology of Prince Olav Coast, East Antarctica. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Earth Science. Australian Academy of Science, Canberra, pp. 32–35.

Hiroi, Y., Shiraishi, K., Yanai, K., Kizaki, K., 1983b. ALUMINUM SILICATES IN THE PRINCE OLAV AND SÔYA COAST, EAST ANTARCTICA. Mem. Natl. Inst. Polar Res. Spec. Issue 28, 115–131.

Hiroi, Y., Shiraishi, K., Motoyoshi, Y., 1991. Late Proterozoic paired metamorphic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks. In: Thomson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Cambridge University Press, Cambridge, pp. 83–87.

Hiroi, Y., Yanagi, A., Kato, M., Kobayashi, T., Prame, B., Hokada, T., Satish–Kumar, M., Ishikawa, M., Adachi, T., Osanai, Y., Motoyoshi, Y., Shiraishi, K., 2014. Supercooled melt inclusions in lower–crustal granulites as a consequence of rapid exhumation by channel flow. Gondwana Res. 25, 226–234.

Hiroi. Y., Hokada, T., Kato, M., Yanagi, A., Adachi, T., Osanai, Y., Motoyoshi, Y., Shiraishi, K., 2019. Felsite-nanogranite inclusions and three Al2SiO5 polymorphs in the same garnet in ulyrahigh-temperature granulites from Rundvågshetta, Lützow-Holm Complex, East Antarctica. J. Mineral. Petrol. Sci. 114, 60–78.

Hokada, T., Motoyoshi, Y., 2006. Electron microprobe technique for U–Th–Pb and REE chemistry of monazite, and its implications for pre-, peak- and post-metamorphic events of the Lützow-Holm Complex and the Napier Complex, East Antarctica. Polar Geosci. 19, 118–151.

Holland, T.J.B., Powell, R., 1998. An enlarged and update internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O– Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J. Metamorph. Geol. 8, 89–124.

Holland, T.J.B., Powell, R., 2003. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492–501.

Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383.

Imayama, T., Takeshita, T., Yi, K., Cho, D.L., Kitajima, K., Tsutsumi, Y., Kayama, M., Nishido, H., Okumura, T., Yagi, K., Itaya, T., Sano, Y., 2012. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the fareastern Nepal Himalaya. Lithos 134, 1–22.

Iwamura, S., Tsunogae, T., Kato, M., Koizumi, T., Dunkley, D.J., 2013. Petrology and phase equilibrium modeling of spinel-sapphirine-bearing mafic granulite from Akarui Point, Lützow-Holm Complex, East Antarctica: Implications for the P-T path. J. Mineral. Petrol. Sci. 108, 345–350.

Jacobs, J., Thomas, R.J., 2004. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic orogeny. Geology 32, 721–724.

Jamieson, R.A., Beaumont, C., Nguyen, M.H., Lee, B., 2002. Interaction of metamorphism, deformation and exhumation in large convergent orogens. J. Metamorph. Geol. 20, 9–24.

Jamieson, R.A., Beaumont, C., Medvedev, S., Nguyen, M.H., 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B0646.

Kadowaki, H., Tsunogae, T., He, X.F., Santosh, M., Takamura, Y., Shaji, E., Tsutsumi, Y., 2019. Pressure ‐ temperature ‐ time evolution of ultrahigh ‐ temperature granulites from the Trivandrum Block, southern India: Implications for long‐lived high‐grade metamorphism. Geol. Jour. 2019, 1–19.

Kawakami, T., Hokada, T., 2010. Linking P-T path with development of discontinuous phosphorus zoning in garnet during high-temperature metamorphism – an example from the Lützow-Holm Complex, East Antarctica. J. Mineral. Petrol. Sci. 108, 345– 350.

Kawakami, T., Grew, E.S., Motoyoshi, Y., Shearer, C.K., Ikeda, T., 2008. Kornerupine sensu stricto associated with mafic and ultramafic rocks in the Lützow-Holm Complex at Akarui Point, East Antarctica: what is the source of boron? Geol. Soc. Lond. Spec. Publ. 308, 351–375.

Kawakami, T., Hokada, T., Sakata, S., Hirata, T., 2016. Possible polymetamorphism and brine infiltration recorded in the garnet-sillimanite gneiss, Skallevikshalsen, Lützow-Holm Complex, East Antarctica. J. Mineral. Petrol. Sci. 111, 129–143.

Kawano, Y., Nishi, N., Kagami, H., 2006. Rb-Sr and Sm-Nd mineral isochron ages of a pegmatitic gneiss from Oku-iwa Rock, Lützow-Holm Complex, East Antarctica. Polar Geosci. 19, 109–117.

Kawasaki, T., Nakano, N., Osanai, Y., 2011. Osumilite and a spinel + quartz associationin garnet-sillimanite gneiss from Rundvågshetta, Lützow-Holm Complex, East Antarctica. Gondwana Res. 19, 430–445.

Kazami, S., Tsunogae, T., Santosh, M., Tsutsumi, Y., Takamura, Y., 2016. Petrology, geochemistry and zircon U–Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: implications for Antarctica-Sri Lanka correlation. J. Asian Earth Sci. 130, 206–222.

Kinny, P.D., Wijbrans, J.R., Froude, D.O., Williams, I.S., Compston, W., 1990. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust. J. Earth Sci. 37, 51–69.

Kitano, I., Osanai, Y., Nakano, N., Adachi, T., Fitzsimons, I.C.W., 2018. Detrital zircon and igneous protolith ages of high-grade metamorphic rocks in the Highland and Wanni Complexes, Sri Lanka: Their geochronological correlation with southern India and East Antarctica. J. Asian Earth Sci. 156, 122–144.

Kohn, M.J., 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol. Soc. Am. Bull. 120, 259–73.

Kohn, M.J., 2014. Himalayan Metamorphism and Its Tectonic Implications. Amu. Rev. Earth Planet. Sci. 42, 381–419.

Kriegsman, L.M., Schumacher, J.C., 1999. Petrology of sapphirine-bearing and associated granulites from central Sri Lanka. J. Petrol. 40, 1211–1239.

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Amer. Mineral. 82, 1019–1037.

Ludwig, K.R., 2008. User’s Manual for Isoplot 3.70. Berkeley Geochronology Center Special Publication, No. 4, p. 70.

Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992. The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300.

McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223–253.

Meert, J., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 1–40.

Meert, J.G., Lieberman, B.S., 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res. 14, 5–21.

Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56, 207–218.

Moecher D.P., Essene, E.J., Anovitz, L.M., 1988. Calculation and application of clinopyroxene-garnet-plagioclase-quartz geobarometers. Contrib. Mineral. Petrol. 100, 92–106.

Mullen, E.D., 1983. MnO/TiO2/P2O5 a minor element discriminations for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett. 62, 53–62.

Nakamura, A., Kitamura, M., Kawakami, T., 2013. Microstructural records of multiple retrograde local H2O supplement in the pelitic gneiss, Lützow-Holm Complex at Akarui Point, East Antarctica. Mineral. Petrol. 108 (2), 177–186.

Nakajima, T., Shibata, K., shiraishi, K., Motoyoshi, Y., Hiroi, Y., 1988. Rb-Sr WHOLE-ROCK AGES OF METAMORPHIC ROCKS FROM EASTERN QUEEN MAUD LAND, EAST ANTARCTICA (2): TENMONDAI ROCK AND RUNDVÅGSHETTA. Proc. NIPR Symp. Antarct. Geosci. 2, 172.

Newton, R.C., Haselton, H.J., 1981. Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer; in Newton R.C., Navrotsky, A. and Wood, B.J. (eds.) Thermodynamics of Mineral and Melts. Springer-Verlag, New York, 125–145.

Nogi, Y., Jokat, W., Kitada, K., Steinhage, D., 2013. Geological structures inferred from airborne geophysical surveys around Lützow-Holm Bay, East Antarctica. Precambrian Res. 234, 279–287.

Osanai, Y., Toyoshima, T., Owada, M., Tsunogae, T., Hokada, T., Crowe, W.A., Ikeda, T.,Kawakami, T., Kawano, Y., Kawasaki, T., Ishikawa, M., Motoyoshi, Y., Shiraishi, K., 2004. Explanatory text of geological map of Skallen, Antarctica (revised edition). Antarctic Geological Map Series, Sheet 39 Skallen (revised edition), National Institute of Polar Research, Japan.

Osanai, Y., Sajeev, K., Owada, M., Kehelpannala, K.V.W., Prame, W.K.B., Nakano, N., Jayatileke, S., 2006. Metamorphic evolution of ultrahigh-temperature and high pressure granulites from Highland Complex. Sri Lanka. J. Asian Earth Sci. 28, 20– 37.

Osanai, Y., Sajeev, K., Nakano, N., Kitano, I., Kehelpannala, W. K., Adachi, T., Malaviarachchi, S. P., 2016a. UHT granulites of the Highland Complex, Sri Lanka I: Geological and petrological background. J. Mineral. Petrol. Sci. 111, 145–156.

Osanai, Y., Sajeev, K., Nakano, N., Kitano, I., Kehelpannala, W. K., Adachi, T., Malaviarachchi, S. P., 2016b. UHT granulites of the Highland Complex, Sri Lanka II: Geochronological constraints and implications for Gondwana correlation. J. Mineral. Petrol. Sci. 111, 157–169.

Paces, J.B., Miller, J.D., 1993. Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res. 98, 13997–14013.

Peace, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48.

Perkins, D., Newton, R.C., 1981. Charnockite geobarometers based on coexistence garnet-pyroxene-plagioclase-quartz. Nature 292, 144–146.

Powell, R., Holland, T.J.B., 1988. An internally consistent thermodynamic dataset with uncertainties and correlations: 3. application, methods, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204.

Rubatto, D., 2002. Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chem Geol 184,123–138.

Rubatto, D., 2017. Zircon: the metamorphic mineral. Rev. Min. Geochem. 83.

Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. Mineral Petrol. 165, 349–372.

Sajeev, K., Osanai, Y., 2004a. Ultrahigh-temperature metamorphism (1150°C, 12 kbar) and multistage evolution of Mg-, Al-rich granulites from the Central Highland Complex Sri Lanka. J. Petrol. 45, 1821–1844.

Sajeev, K., Osanai, Y., 2004b. ‘Osumilite’ and ‘spinel + quartz’ from Highland Complex, Sri Lanka: a case of cooling and decompression after ultrahigh-temperature metamorphism. J. Min. Petrol. Sci. 99, 320–327.

Sajeev, K., Osanai, Y., Connolly, J.A.D., Suzuki, S., Ishioka, J., Kagami, H., Rino, S., 2007. Extreme crustal metamorphism during a neoproterozoic event in Sri Lanka: a study of dry mafic granulites. J. Geol. 115, 563–582.

Santosh, M., Maruyama, S., Sato, K., 2009. Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in southern India? Gondwana Res. 16, 321–341.

Santosh, M., Tsunogae, T., Malaviarachchi, S.P.K., Zhang, Z., Ding, H., Tang, L., Dharmapriya, P.L., 2014. Neoproterozoic crustal evolution in Sri Lanka: insights from petrologic, geochemical and zircon U–Pb and Lu–Hf isotopic data and implications for Gondwana assembly. Precambrian Res. 255, 1–29.

Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Ram Mohan, M., Satyanarayanan, M., 2015. An exotic Mesoarchean microcontinent: the Coorg Block, southern India. Gondwana Res. 27, 165–195.

Santosh, M., Yang, Q. Y., Shaji, E., Mohan, M. R., Tsunogae, T., Satyanarayanan, M., 2016. Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gondwana Res. 29, 105–135.

Santosh, M., Hu, C.N., He, X.F., Li, S.S., Tsunogae, T., SHaji, E., Indu, G., 2017. Neoproterozoic arc magmatism in the southern Madurai Block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Res. 45, 1–42.

Satish-Kumar, M., Hermann, J., Tsunogae, T., Osanai, Y., 2006. Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust. J. Metamorph. Geol. 24, 241–261.

Shiraishi, K., Hiroi, Y., Moriwaki, K., 1985. Geological Map of Tenmondai Rock (Antarctic geological map series, sheet 19). National Institute of Polar Research, Tokyo, Japan.

Shiraishi, K., Hiroi, Y., Motoyoshi, Y., 1989. 1:250,000 Geological Map of Lützow-Holm Bay. National Institute of Polar Research, Tokyo, Japan.

Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y., Nakai, Y., 1994. Cambrian orogenic belt in east Antarctica and Sri Lanka: implications for Gondwana assembly. J. Geol. 102, 47–65.

Shiraishi, K., Hokada, T., Fanning, C.M., Misawa, K., Motoyoshi, Y., 2003. Timing of thermal events in eastern Dronning Maud Land, East Antarctica. Polar Geosci. 16, 76–99.

Shiraishi, K., Dunkley, D.J., Hokada, T., Fanning, C.M., Kagami, H., Hamamoto, T., 2008. Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Geolog. Soc. Lond. Spec. Publ., 21–67.

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313–345.

Takahashi, K., Tsunogae, T., 2017. Carbonic fluid inclusions in a garnet–pyroxene granulite from Austhovde in the Lützow–Holm Complex, East Antarctica: Implications for a decompressional P–T path. J. Minral. Petrol. Sci. 112, 132–137.

Takahashi, K., Tsunogae, T., Santosh, M., Takamura, Y., Tsutsumi, Y., 2018. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: implications for crustal growth and terrane assembly in erstwhile Gondwana fragments. J. Asian Earth Sci. 157, 245–268.

Takamura, Y., Tsunogae, T., Santosh, M., Malaviarachchi, S.P.K., Tsutsumi, Y., 2015. Petrology and zircon U–Pb geochronology of metagabbro from the Highland Complex, Sri Lanka: Implications for the correlation of Gondwana suture zones. J. Asian Earth Sci. 113, 826–841.

Takamura, Y., Tsunogae, T., Santosh, M., Tsutsumi, Y., 2018. Detrital zircon geochronology of the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation. Geosci. Front. 9, 355–375.

Thompson, A.B., 1976. Mineral reactions in pelitic rocks: II. Calculations of some P-T-X (Fe-Mg) phase relations. Am. J. Sci. 276, 425–454.

Tsunogae, T., Dunkley, D.J., Horie, K., Endo, T., Miyamoto, T., Kato, M., 2014. Petrology and SHRIMP zircon geochronology of granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean magmatism and Neoproterozoic high-grade metamorphism. Geosci. Front. 5, 167–182.

Tsunogae, T., Yang, Q.Y., Santosh, M., 2015. Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: petrology, geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes and tectonic implications. Precambrian Res. 266, 467–489.

Tsunogae, T., Yang, Q. Y., Santosh, M., 2016. Neoarchean–Early Paleoproterozoic and Early Neoproterozoic arc magmatism in the Lützow–Holm complex, East Antarctica: insights from petrology, geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes. Lithos. 263, 239–256.

Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., Momma, K., Matsubara, S., Shigeoka, M., Yokoyama, K., 2012. LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, Central Japan. Bull. Natl. Mus. Nat. Sci. Ser. C. Geol. Paleontol. 38, 15–32.

White, R.W., Powell, R., Holland, T.J.B., Worley, B.A., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O– TiO2–Fe2O3. J. Metamorph. Geol. 18, 497–511.

White, R.W., Powell, R., Clarke, G.L., 2002. The interpretation of reaction textures in Fe–rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2– H2O–TiO2–Fe2O3. J. Metamorph. Geol. 20, 41–55.

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., Green, E.C.R., 2014. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32, 261–286.

Whitehouse, M.J., Platt, J.P., 2003. Dating high-grade metamorphism – constraints from rare-earth elements in zircon and garnet. Contrib. Mineral. Petrol. 145, 61–74. Whitney, D.L., Evans, B., 2010 Abbreviations for names of rock-forming minerals. Amer. Mineral. 95, 185–187.

Williams, I.S., Claesson, S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U–Th–Pb. Contrib. Mineral. Petrol. 97, 205–217.

Williams, I.S., 1998. U–Th–Pb geochronology by ion microprobe. In: McKibben, M. A., Shanks, W.C. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes, vol. 7, pp. 1–35, Rev. Econ. Geol.

Wilson, M., 1989. Igneous Petrogenesis: a Global Tectonic Approach. Unqin Hyman, London, 466.

Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20. 325–343.

Yoshida, M., Funaki, M., Vitanage, P.W., 1992. Proterozoic to Mesozoic East Gondwana: The juxtaposition of India, Sri Lanka, and Antarctica. Tectonics 11, 381–391.

Yoshimura, Y., Motoyoshi, Y., Miyamoto, T., Grew, E.S., Carson, C.J., Dunkley, D.J., 2004. High-grade metamorphic rocks from Skallevikshalsen in the Lützow-Holm Complex, East Antarctica: metamorphic conditions and possibility of partial melting. Polar Geosci. 17, 57–87.

Yoshimura, Y., Motoyoshi, M., Miyamoto, T., 2008. Sapphirine + quartz association in garnet: Implication for ultrahigh-temperature metamorphism in Rundvågshetta, Lützow-Holm Complex, East Antarctica. Geol. Soc. London, Spec. Publ. 308, 377– 390.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る